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Background
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 Monte Carlo track-structure codes are distinguished from 
the conventional MC dosimetry codes by their use of 
discrete physics models that enable detailed simulations 
w/out using artificial transport steps.w/out using artificial transport steps.

 Track-structure simulations is the preferred theoretical 
tool for:

 Mechanistic studies at the (sub) cellular and DNA level.

 Microdosimetry-based predictions of RBE (and QF).



Motivation
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 There is an increasing need for extending electron 
track-structure simulations to high-energies (MeV) 
for applications such as:

 FLASH radiobiology

 Microdosimetry in hadron therapy (δ-ray effects)

 Space radiation (electrons in VA belt, δ-rays from GCR)



The challenge
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 To develop a discrete physics model suitable for condensed 
targets (such as liquid water) that is reliable over all 
energies of interest (eV to MeV).

For inelastic interactions, commonly used discrete models  For inelastic interactions, commonly used discrete models 
are limited to:

 gaseous targets (e.g. binary-encounter atomic models) 
or 

 low-energies (e.g. solid-state dielectric models).



Aim of present work
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 Develop a relativistic version of DNA-Option 4 
inelastic model that:

 Improves the existing models for liquid water  Improves the existing models for liquid water 
(DNA-Option 2 and DNA-Option 4).

 Extends up to 10 MeV.



Overview of Geant4-DNA EM models 
for liquid water medium
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 G4EmDNAPhysics_option2 models

 Default model

 Available since Geant4 version 9.1 (released 2007)

 Default energy range: 7.4 eV – 1 MeV

 G4EmDNAPhysics_option4 models

Recommended low-energy model Recommended low-energy model

 Available since Geant4 version 10.2 (released 2016)

 Default energy range: 10 eV – 10 keV

 G4EmDNAPhysics_option6 models

 Adopted from the CPA100 code

 Available since Geant4 version 10.4 (released 2017) 

 Default energy range: 11 eV – 256 keV

 Recently extended to include cross section for DNA constituents



New features in Opt4Rel
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i. Implementation of a new Energy-Loss-Function (ELF) 
using the algorithm developed at the Univ. of Ioannina.
 Improved sum-rule consistency tests.

 Improved parameterization of experimental data. Improved parameterization of experimental data.

 Improved high-energy asymptotic trend.

ii. More consistent implementation of low-energy Born 
corrections.

iii. Implementation of the Fermi density correction to the 
DCS (differential cross section).



10eV 1keV 100keV 10MeV

Opt4Rel at a glance
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Regime I Regime II Regime IV

1MeV

Regime III

CORRECTIONS:
Low-Energy Born ON

Relativistic Longitudinal OFF
Relativistic Transverse OFF

CORRECTIONS:
Low-Energy Born ON

Relativistic Longitudinal ON
Relativistic Transverse OFF

CORRECTIONS:
Low-Energy Born OFF

Relativistic Longitudinal ON
Relativistic Transverse ON
Asymptotic correction ON

CORRECTIONS:
Low-Energy Born OFF

Relativistic Longitudinal ON
Relativistic Transverse ON
Asymptotic correction ON

Fermi-density correction ON



i. New ELF (algorithm + parameterization)

absorption channels DNA-Option 2

DNA-Option 4

Energy-Loss-Function (ELF)

Univ. of Ioannina algorithm
9
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• The algorithm permits a sum-rule constrained
overlap of ionizations and excitation 
absorption spectra and it offers greater fitting 
flexibility near shell binding energies. 

Energy-Loss-Function (ELF)



Sum-rule tests

f-sum-rule

The sum-rules test the “internal” consistency of the dielectric model

Tests the absorption spectrum
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ELF-sum-rule

KK-sum-rule

Tests the ELF at 
intermediate- and high-E                   

Tests the ELF 
at low-E 

(screening)



Improved sum-rule consistency tests
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The new model (Opt4Rel) improves all sum rules 
compared to the existing (Opt2 and Opt4) models.
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Improved experimental data representation
12

Improved fit
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The new model (Opt4Rel) improves the representation of the 
experimental data compared to the existing (Opt2, Opt4) models.
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 Drude-based ELF models (including DNA-Option 2) 
overestimate CS and SP at high energies (>>keV) 
because of the wrong asymptotic trend (1/E3 instead 

Improved high-energy asymptotic trend

because of the wrong asymptotic trend (1/E instead 
of 1/E4.5).

 An ad hoc high-energy asymptotic correction to the 
ELF is applied above 100 keV.



ii. New low-energy Born corrections

The following corrections are applied to the PWBA
Exchange correction

Mott-exchange
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Exchange-Coulomb 
correction

Un: Average KE in 
the n-th shell

New 
implementation

Proper kinematic arguments        
(not considered in the default Opt2)
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 Non-negligible contribution to CS and SP above 1 MeV.

 Affects only transverse interactions.

 We use the optical approximation to calculate the 
correction to the DCS (Fernandez-Varea et al.):

iii. Implementation of the Fermi density effect in 
the inelastic cross sections

correction to the DCS (Fernandez-Varea et al.):
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δF  is calculated from the Sternheimer model with parameters for 
liquid water medium.
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Medium-specific DCS based on the ELF 

New ELF

New ELF

New formulation

Fermi density effect
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 Stopping power (spower)

 Range (range)

Benchmarking Simulations

 DPK (TestEm12)

 Lineal Energy (microyz)
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Electron dose point kernel in liquid water
Default (Opt2)

Default (Opt2)

Default (Opt2)

New (Opt4Rel)
New (Opt4Rel)

New (Opt4Rel) New (Opt4Rel)
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 The new model (DNA-Opt4Rel) is in good agreement with StdOpt4 at high 
energies (>500 keV) contrary to the default DNA-Opt2.

Default (Opt2)



Electron lineal energy in liquid water

 Maximum differences 
between the default 
(Opt2) and the new model 
(Opt4Rel) depend on 
sphere size:

 5% for the 1μm sphere

Sphere 
diameter
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 10% for the 100nm sphere

 20% for the 10nm sphereSphere 
diameter



Summary of Results
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 The new model:

 Reduces sum-rule errors below 1.5% (default model 6.5%).

 Improves the fit to the experimental dielectric data.

 Reduces the differences from ICRU SP and Range data  Reduces the differences from ICRU SP and Range data 
below ~5% (default model ~10%).

 Calculates DPK in good agreement with StdOpt4 at high-
energies (contrary to the default model). 

 Differs from the default model for mean values of 
microdosimetry quantities by 5-20% (or more).



Conclusion
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 The DNA-Opt4 model has been improved and extended up 
to 10 MeV.

 This development extends Geant4-DNA electron track-
structure capabilities from its current 1 MeV upper limit to structure capabilities from its current 1 MeV upper limit to 
10 MeV.

 The new model (DNA-Opt4Rel) uses the same methodology 
as the existing Geant4-DNA dielectric models (Opt2, Opt4) 
but employs (i) an improved ELF for liquid water, (ii) a more 
consistent implementation of low-energy Born 
corrections, and (iii) various relativistic corrections.



Future
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• Perform a systematic comparisons with StdOpt4 up to 10 
MeV (now up to 3 MeV).
• To validate the ELF asymptotic correction and the density effect 

implementation.

• Revise the ELF parameterization according to more recent • Revise the ELF parameterization according to more recent 
experimental dielectric data for liquid water.
• e.g. adopt the ECN model (used by KURBUC code) ?

• Correct the ELF for exchange-correlation effects.
• e.g. implement many-body local-field-corrections (LFC) ?

The last two are expected to have a strong influence on very-low-energy 
(sub-100eV) electron transport.
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