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About microdosimetry

Frequency

Dose-weighted

• stochastic approach

• lineal energy: 𝑦 =
ε

ҧ𝑙

• studied via distributions 𝑓 𝑦 , 
𝑑(𝑦)…

• … and respective means  𝑦𝐹, 𝑦𝐷

can be related to traditional dosimetric
quantities (i.e. LET) with some caveats

single-interaction
energy deposit

mean path-length 
inside detector



What microdosimetry lacks

• no fully comprehensive uncertainty budget
• for use in experimental/clinical settings

• standardisation across the whole field
• comparing papers between groups is often difficult

• making comparisons with radiobiology/dosimetry papers even more

• not used in treatment planning



What microdosimetry lacks

• no fully comprehensive uncertainty budget
• for use in experimental/clinical settings

• standardisation across the whole field
• comparing papers between groups is often difficult

• making comparisons with radiobiology/dosimetry papers even more

• not used in treatment planning

← if we fix this…

← … and this…

← … maybe we’ll get closer 
to this



The microdiamond detector
used throughout this study

• chemical vapour deposition diamond 
detector

• originally developed at Tor Vergata

• currently used as part of collaboration between Tor Vergata, 
Surrey, and NPL

• intrinsic diamond acts as SV
• possible thickness in 1—50μm range

• relatively large surface (50μm, 250μm, 500μm, … width)

• lot of experimental data in literature
• … but not quite as much as other detector types

Angelone et al., 2011
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Radioprotection advanced example
as of the next Geant4 release

• simulates several microdosimetric
detectors

• type, shape, and position can be changed via macro

• can be placed in an array to speed up simulations

• scores ε, 𝑙, and 𝑍 of secondaries

• provides basic data analysis for 
microdosimetry

• spectra, means, and RBE (requires ROOT or Python)

• simulates a simple clinical setup
• detector in a water phantom

• (optional) detector in a vacuum (for space application)

• allows fixing consistent target 
statistics

• the simulation stops after n events in the SV



Detector characterisation + uncertainty budget

• test the effect of several parameters
• set large ranges (detector characterisation) or small variations 

(uncertainty budget) of a detector parameter

• run simulations in parallel and collect the spectra

• comparison carried out along a Bragg curve
• for each parameter, several depths in water along a 150MeV curve

(σ=1.5MeV spread)

• spectra are compared via their means…
• ത𝑦𝐹, 𝑦∗, and ത𝑦𝐷

• … and the resulting RBE
• MKM RBE (function of 𝑦∗) for HSG (late responding tissue)

• weight function RBE for crypt cells (early responding tissue)

similar to ത𝑦𝐷 at low 𝑦, but adds an 
exponential cut-off at higher 𝑦



Here’s a selection of the results so far…



Detector 
characterisation
1/3: effect of SV thickness variation

• increasing the SV thickness strongly 
reduces the means

• varying ҧ𝑙 with the thickness works well for crossers, but 
not for stoppers

• ത𝑦𝐷 very affected by high energy stoppers, so it is heavily 
affected by thickness variations

• ത𝑦𝐹 is not, and shows minimal variations up to 20μm

• 𝑦∗ has an intermediate behaviour

• both RBEs show small variations compared to 
those seen in the means

• little to no variation of these trends with 
depth



Detector 
characterisation
2/3: effect of SV width variation

Two SV thickness
values tested

• increasing the SV width increases the 
means

• wider SV = fewer electrons escape laterally

• ത𝑦𝐹, 𝑦∗, ത𝑦𝐷, and the RBEs show similar trends

• … but the means have large relative variations, the RBE 
much smaller ones 

• plateau past 100μm: lateral escape becomes negligible

• thicker SVs show stronger variations
• larger lateral surface = more electrons can escape

• stronger variations at lower depths
• faster protons = wider electron penumbra

• same trend but larger relative variations are larger



Detector 
characterisation
3/3: water conversion factor

• 0.32 conversion factor to 𝑦 [Davis et al. 2014]

• scales y to the values of an equivalent water SV 3.1 times larger

• its accuracy is tested here by replacing the SV with a water 
volume and calculating the relative variation this causes to the 
mean

• the conversion factor works very well overall
• especially for the RBEs and ത𝑦𝐹

• … but its accuracy decreases for thicker SVs and at lower depths

• discrepancies due to high 𝑦 secondaries
• high energy, low range particles with high 𝑍

• manually removing events past the main peak of 𝑑(𝑦), all 
variations on the right become < 5%

On the ordinate: ratio 
between the mean
measured for the 
diamond detector with 
the conversion factor, 
and the same mean
measured in a water SV



Uncertainty budget
1/2: error due to detector positioning

• effect on the mean of depth (in 
water) uncertainties 

• for small offsets from the nominal value it results in 
a linear variation of the means

• the resulting relative variation is highest between 
the peak and the beginning of the distal region

• the variation can be quite large
• around the peak a 1mm uncertainty causes a 10% 

error on the means

• … but the error on the RBEs is much smaller

On the ordinate: ratio 
between the mean in 
the offset and in the 
nominal position



Uncertainty budget
2/2: error due to SV size uncertainty

• small variations in SV size
• corresponding to uncertainties typically found 

experimentally

• the effect on the means and RBEs is consistent 
with that seen in the detector characterisation

• RBEs have negligible errors, and that of ത𝑦𝐹 is 
below the statistical uncertainty

• 𝑦∗ and ത𝑦𝐷 can vary up to 5%

• … but in ത𝑦𝐷 this is often hidden by statistical 
fluctuations

• some depth dependence
• 𝑦∗ variation goes from around 5% in the 

entrance to 2% in the distal part

• ... however almost no dependence on nominal 
SV thickness only a small one in the distal edge

On the ordinate: ratio between
the mean from the varied and 
nominal depth



Overall conclusions

• most parameters/uncertainties influence ത𝑦𝐷 more than ത𝑦𝐹
• … and 𝑦∗ has an intermediate behaviour

• because most of the parameters tested affect the high energy tail much more than the main peak

• a notable exception is the SV width

• both RBEs are weakly affected 
• uncertainties have a small effect on the RBE

• huge variation of the detector’s geometric parameters are required to see a significant RBE change

• this is good if we want a consistent RBE for a given depth in a given beam…

• … but it’s bad if we want our RBE models to reflect the physical properties of the detector

do current RBE models lack sensitivity to variations in the microdosimetric spectrum? 
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Backup slides



RBE weight function
from Loncon et al. 1994

• can weight the whole spectrum

• gives only a specific RBE

• only some projectile-target 
combinations



Statistical uncertainty



Thickness variation



Width variation



Conversion factor



Conversion factor
without events past the tail




