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Overview

§DaRT
§Aims
§Simulation
§Results

–DNA damage due to ⍺-particles with kinetic energies in the DaRT
decay chain

–Impact of DNA density on DNA damage
§Summary
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Diffusing alpha-emitters Radiation Therapy 
(DaRT)

§ Interstitial brachytherapy technique 
§ Clinical trials ongoing

– Skin, oral cavity and prostate cancer
– Israel, USA, Japan, Italy, France

§ Radium-224 seeds
§ Diffusion increases the range over 

which dose is delivered
§ Complex decay chain with several ⍺-

particles with different kinetic energies

(left) dose distribution calculated from autoradiography 
and (right) histological section of a human solid tumour 

treated with 224Ra wires in a human solid tumour1
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1 Cooks et al. Anticancer Research, 32: 5315-5322 (2012) 
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Aims

To simulate the DNA damage induced by DaRT for a better 
understanding of the radiobiological effectiveness. 

§ Calculate DNA damage due to ⍺-particles with kinetic 
energies in the DaRT decay chain

– How does the distribution vary with LET (linear energy 
transfer)?

– What is the distribution of simple and complex damages1?

§ Calculate impact of DNA density on DNA damage
– DNA density varies between cell types and during the cell 

cycle
– Can simulation time be reduced by increasing the 

simulation density?
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1 Based on Nikjoo et. al., Int J Radiat Biol, 71(5), (1997)
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Simulation
§ Geant4 11.0
§ Simplified cell nucleus with straight strands of chromatin 

fibre to reduce simulation time
– ~21,000 base pairs per chromatin fibre
– Number and position of chromatin fibre strands can be 

varied

§ Primary source spherical surface 1 μm radius centred 
on the nucleus

§ G4EmDNAPhysics_option2 inside the nucleus and 
G4EmStandard_option4 outside

§ Direct damage
– Direct damage radius 0.35 nm 
– Linear damage model1 5 – 37.5 eV 

§ Indirect damage
– IRT model
– 40.5% probability of OH● radical causing an indirect 

strand break
– Cut off time 5 ns
– Radicals removed > 9 nm from DNA

Chromatin Fibre

Simplified Cell Nucleus

Number and spacing simulation dependant
275 – 750 nm

⍺
source 
1 μm

1 W. Friedland et al., Radiat. Res., 159 (2003), 401–410 
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Aim 1: Calculate DNA damage from ⍺-
particles with kinetic energies in the DaRT
decay chain
§ To understand the radiobiological effectiveness 

of DaRT an understanding of DNA damage for 
the relevant kinetic energies is required 

§ Incident ⍺-particles with kinetic energy in 
range 0.1 - 9 MeV, to cover DaRT range

§ Track structure is dependant on the kinetic 
energy however two particles with different 
kinetic energy can have the same LET

0.1 MeV

3 MeV

Position of OH● radicals up to 1ns, ~120 keV/μm
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⍺-particle LET - ICRU90

Simplified Cell 
Nucleus

300 nm

⍺ source 
1 μm
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Individual Strand Break Results
§ Direct damage is constant 
§ Higher kinetic energy ⍺-particles (above 

maximum LET)
– Indirect damage decreases with increasing 

LET

§ Lower kinetic energy ⍺-particles (below 
maximum LET)

– Indirect damage is lower for an ⍺-particle 
with kinetic energy below the maximum 
LET

Indirect damage is more significant than  
direct damage at low LET

0.1 MeV

3 MeV

Position of OH● radicals up to 1 ns, ~120 keV/μm
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Double Strand Break Results

§ Number of total DSB increases with 
increasing LET

§ Complexity of DSB increases with 
increasing LET

§ Number of complex DSB increases 
approximately linearly with LET

DSB complexity increases with LET 
therefore more detrimental damage to 

the cell is done at higher LET
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Aim 2: Calculate impact of DNA density on 
DNA damage
§ Base pair density in human cells varies in the range1 0.007 - 0.058 bp/nm3

§ Fix number of base pairs, vary volume and chromatin fibre spacing
§ 1.3 million base pairs
§ Primary source spherical surface 1 μm radius centred on the nucleus

– Incident ⍺-particles with kinetic energy in range 3 – 8 MeV 
– Maximum variation in kinetic energy across the target 5% of mean kinetic energy

750 nm
0.008 bp/nm3

275 nm
0.056 bp/nm3 350 nm

0.035 bp/nm3

1 Rep. Prog. Phys.77(2014) 8
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Base Pair Density Results

§ The number of strand 
breaks increases 
approximately linearly with 
base pair density

§ LET of a 3 MeV ⍺-particle 
is higher than at 8 MeV, 
therefore more energy is 
deposited per unit 
distance and more strand 
breaks occur.

Base pair density 
significantly affects the 
amount of DNA damage
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Base Pair Density Simulation Time

§ Aim to see if simulation time 
could be reduced by using 
higher density geometries as 
less primary particles are 
required

§ However the simulation is 
significantly longer for higher 
density geometries

– Due to larger number of 
molecules to track for the 
chemical simulation

§ For all energies there is 
approximately a 6 times 
increase of total strand breaks 
for a 20 times increase in 
simulation time
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Summary and Future Work

§ Aim 1: Calculate DNA damage due to ⍺-particles with kinetic energies in the DaRT decay 
chain

– Number of individual damages per Gy caused by direct damage is constant
– Number of individual damages per Gy caused by indirect damage decreases
– Indirect damage differs for kinetic energies above and below the maximum LET
– More complex DSB at higher LET

§ Aim 2: Calculate impact of DNA density on DNA damage
– More DNA damage occurs for a denser DNA geometry
– Approximately linear 
– Simulation time increases significantly for higher density geometries

§ Future work:
– Compare to a more realistic cell geometry
– Calculate cell survival
– Calculate the DNA damage distribution for DaRT taking into account the whole decay chain 

and diffusion of radon
– Compare to photon simulations for a better understanding of the radiobiological 

effectiveness of DaRT

§ Initial results are promising for simulating the full DaRT process and assessing the 
radiobiological effectiveness of this treatment 
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Thank you
Any questions?
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Kinetic energy variation across the target

§ Maximum kinetic energy 
variation across the target as a 
percentage of the mean kinetic 
energy

§ Maximum variation 5%
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Charge decrease at low kinetic energies

ICRU90
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