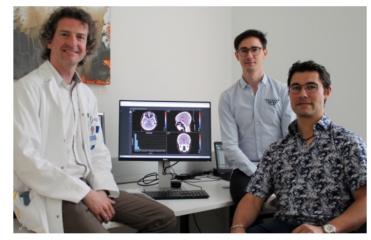
IDEAL/GATE-RTion for independent dose calculation in carbon ion beam therapy

<u>A. F. Resch¹</u>, M. Clausen², M. Favaretto¹, D. Georg², M. Stock^{1,3}, L. Grevillot¹ ¹MedAustron Ion Therapy Centre, Wiener Neustadt, Austria ²Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria ³Karl Landsteiner University of Health Sciences, Wiener Neustadt, Austria


Motivation & Purpose

- Patient specific quality assurance (PSQA)
 - Time consuming measurements:
 - 2023: 350 h/year ≈ 25 treatment days/year for carbon ions
- Goal: replace PSQA by independent dose calculation (IDC) without loss of quality control
 - ✓ Protons: measurement time reduction by -87% (2021) ✓
 - o * Carbon ions: ongoing IDEAL
 project *

Reimagining patient-specific QA in proton and ion therapy facilities

26 May 2021 Sponsored by IBA Dosimetry

Medical physicists from the Austrian particle therapy centre MedAustron explain how – and why – they've put an independent QA solution at the heart of their patient treatment programme

In use since February 2021

First worldwide clinical user of myQA iON for protons!

MedAustron

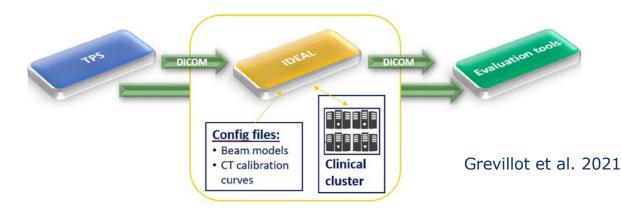
Purpose:

Develop Independent Dose Calculation System for Light Ion Beam Therapy

GATE-RTion/IDEAL

ntiers in Physics I www.frontiersin.ord

August 2021 | Volume 9 | Article 704760

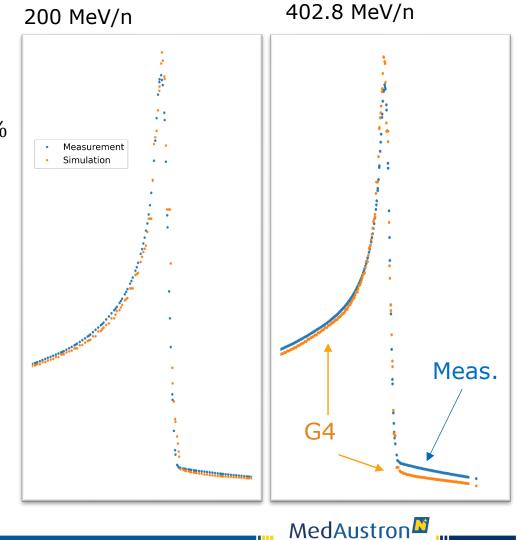


The GATE-RTion/IDEAL Independent Dose Calculation System for Light Ion Beam Therapy

L. Grevillot^{1,4†}, D. J. Boersma^{1,2†}, H. Fuchs^{1,3}, M. Bolsa-Ferruz^{1,3}, L. Scheuchenpflug^{1,4}, D. Georg³, G. Kronreif² and M. Stock¹

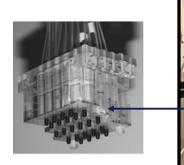
¹ MedAustron Ion Therapy Center, Werer Neustadt, Austria, ²ACMIT Gribh, Werer Neustadt, Austria, ³Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria, ⁴Isotope Physics, Faculty of Physics, University of Vienna, Vienna, Austria

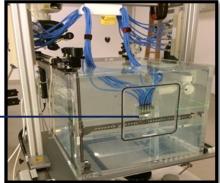
- GATE-RTion:
 - Calculation engine behind IDEAL
 - $_{\odot}$ Uses macro files as input such as GATE
 - New release requires intensive verification process
 - v1.0 well validated: >9 publications using the same version
 - Release cycle ~5 years
- IDEAL/Independent Dose Calculation System for Light Ion Beam Therapy
 - DICOM in / DICOM out
 - Retrieves all information from DICOM, sets up MC simulation and post-processes output automatically
 - Open source: <u>https://github.com/OpenGATE/IDEAL</u>


IDEAL/GATE-RTion v1.0 commissioning results Carbon ion beams

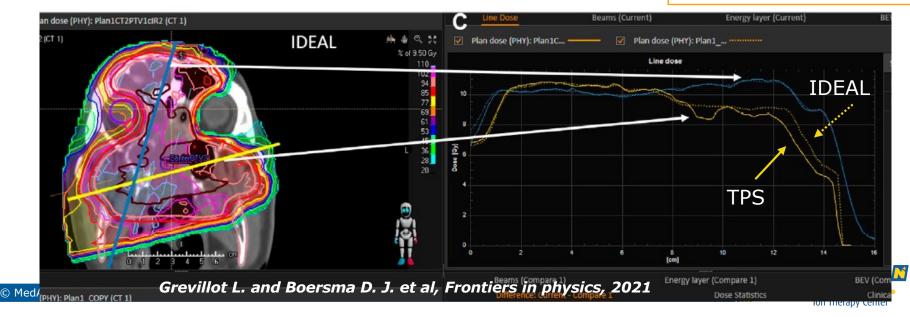
- Commissioning results • Beam ranges in water $\Delta_{R80} \le 0.3 mm$ • Peak widths $\Delta_{W50} \le 0.3 mm$ • Spot sizes in air $\Delta_{FWHM} < 8 \%$ • HU to material conversion $\overline{\Delta_{\rho_m}} < 0.1 \%$
- Single energies

 Notable local dose deviations (tail)
 Better agreement in more recent/future Geant4 versions?

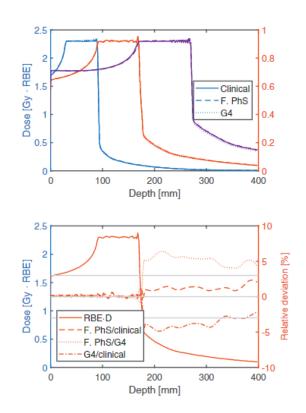

- Spread out Bragg peaks, local dose deviation
 - \circ Per plan $\overline{\Delta_{all}} \leq 2 \%$

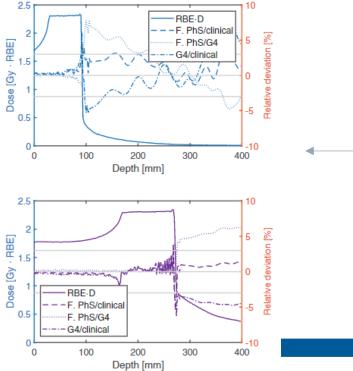

```
\odot Within target \overline{\Delta_{SOBP}} < 1 \%
```

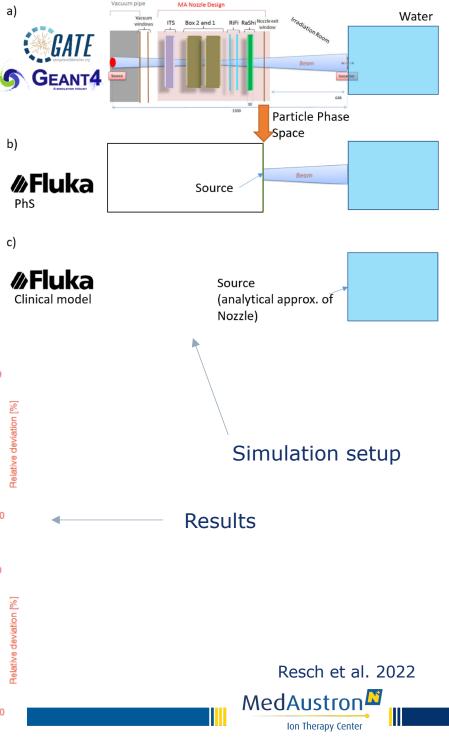

Patient Specific Quality Assurance (PSQA)


- Experimental PSQA
 - Measurement in homogeneous water geometry ✓
 - \circ Measurement quantity: dose to water \checkmark
- Independent dose calculation
 - \circ Dose calculation in patient geometry \checkmark
 - Clinical quantity: RBE * dose ×
 - → RBE model needed ×

Measurement set-up using 3D-block

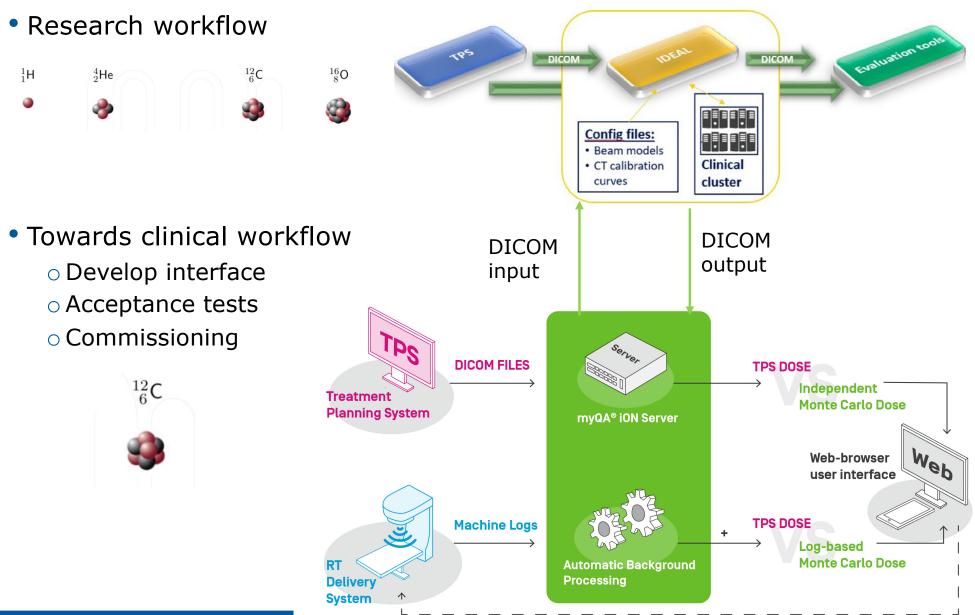

Such effects are not visible in a water tank! (exp. PSQA)




Proof of concept: Geant4 for LEM I

RBE study within the TPS

- Fluence tables generated with GATE-RTion or FLUKA (two different setups)
- Evaluated 3 water & 10 patient cases \Rightarrow Good agreement of RBE weighted dose $\overline{\Delta_{target}} < 1\%$


Next Steps

2022/2023: MyDEAL v1: integration of IDEAL v1.0 into myQA iON, IBA Dosimetry

2023/2024: GATE-RTion v2.0

Interfacing IDEAL v1.0 with myQA iON myDEAL 1.0

© MedAustron

Request Irradiation Logs (Fraction to Fraction throughout treatment course)

New features for GATE RTion v2.0

• Linear energy transfer (LET) calculation

- $_{\odot}\,$ Transfer implementation from GATE $\checkmark\,$
 - See earlier talk Resch et al. "Benchmarking LET ..."

Source/beam modeling improvements

Movable snout

 \circ Bind beam model and nozzle geometry \checkmark

 \circ Support (energy dependent) dose correction factors \checkmark

Relative biological effectiveness (RBE) models

RBE varies in the order of about 1.5 to 3 in clinical scenarios

modified Microdosimetric Kinetic Model (mMKM)

- Transfer from GATE develop branch \checkmark
 - See talk Lydia Maigne "Biological dose estimation for proton and carbon ion treatment plans using the GATE platform"

Local effect model I (LEM I)

- Classical approach: Implemented in TPSs
- Low dose approximation: available e.g. in FLUKA (Mairani et al.)

New architecture for GATE RTion v2.0

Simplify use

Replace macro interface with python interface

- See talk David Sarrut and Lydia Maigne
- Allows significant simplification of IDEAL v2.0

Simplify installation

○ pip install

Automatize & advance verification

o Dose

- Comprehensive measurement set available
- Multi-center approach?

○ RBE, LET

Consistency checks

Geometry

→ Simplify code upgrades

Inspired by: Arce et al. 2021, Report on G4-Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group

Summary

- IDEAL v1.0 was released in April 2021
 - Extensive validation
- IDEAL v1.0 was accepted and partially commissioned at MedAustron:
 - For scanned proton & carbon ion beams

Perspectives

- Clinical implementation
 - Integration of IDEAL v1.0 into myQA iON
 Collaboration between IBA dosimetry and MedAustron
 - Goal: 2023
 - IDEAL v2.0

Questions or interested?

Do not hesitate to contact:

andreas.resch@medaustron.at

- New features: LET, RBE for proton & carbon ions
- New architecture: python binding

Thank you for your attention!

- **Loic Grevillot:** IDEAL project initiator ٠
- **David Boersma**: Former IDEAL v1.0 main developer
- Martina Favaretto: Current IDEAL v1.0 main developer
- MedAustron medical physics team: for providing measurements
- OpenGate collaboration for development and maintenance of GATE
- Geant4 collaboration for providing frequent Geant4 updates
- **Fonds** for financial support for 3 years ٠

MEGAUSI

Kofinanziert von der **Europäischen Union**

The financial support from the "Niederösterreichischen Wirtschafts- und Tourismusfonds" and European union in form of the EFRE fonds.

