Validation of Geant4 fragmentation models in ⁴He ion therapy

D. Bolst¹, M. Durante², M. Marafini³, M. Martisikova⁴, M. Rovituso⁵, S. Guatelli¹

¹Centre for Medical Radiation Physics, University of Wollongong, Australia ²Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany ³CREF - Research Center Enrico Fermi and INFN, Sezione di Roma, Italy ⁴Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany ⁵Holland PTC, Delft University of Technology

Helium ion therapy

- Growing interest in helium ion therapy in recent years
 - Patients treated at GSI
- Presents middle ground between proton and carbon ion therapy
- Monte Carlo becoming more widely used in medical physics including treatment dose planning verification
- Critical to know the behaviour of models used for medical physics applications
 - This study presents the validation of Geant4 for helium ion therapy in terms of it fragment production and distributions (angular and energy)

Comparison to experimental data

- Comparisons performed using version 11.00 of Geant4
- Evaluated the following hadronic models:

Results

Angular distributions – Rovituso et al.

CENTRE FOR MEDICAL RADIATION PHYSICS

Angular distributions – Marafini et al.

	Model	$111 > 0^{\circ}$	$211 > 0^{\circ}$	$311 > 0^{\circ}$	🕂 Exp 🕚 BIC 📕 QMD 🔺
≥0		$H = >0^{-1}$	$-H = >0^{-1}$	$H = >0^{-1}$	– . 102 MeV/u . 125 MeV/u
	102MeV/u	4710	45 1 10	05115	
	BIC	47 ± 6	45 ± 12	65 ± 17	
	QMD	47 ± 7	46 ± 12	78 ± 38	200 500
	INCL	$30{\pm}4$	34 ± 24	84 ± 20	
	$125 \mathrm{MeV/u}$				
	BIC	56 ± 6	34 ± 5	73 ± 44	
	QMD	59 ± 7	42 ± 8	75 ± 42	
	INCL	42 ± 5	38 ± 9	82 ± 55	
	145 MeV/u				
	BIC	49 ± 8	32 ± 13	75 ± 31	— <u>≥10⁻³ Angle (deg)</u> Angle (deg) 350 — 1
	QMD	57 ± 9	53 ± 19	73 ± 17	300 ² ² H
	INCL	39 ± 5	40 ± 17	78 ± 24	
>10	Model	$^{1}{\rm H} => 10^{\circ}$	$^{2}H => 10^{\circ}$	${}^{3}\mathrm{H} => 10^{\circ}$	
	102 MeV/u				
	BIC	$30{\pm}4$	36 ± 16	53 ± 17	
	QMD	28 ± 6	36 ± 16	73 ± 50	50
	INCL	6 ± 1	23 ± 34	80 ± 26	0 10 15 20 25 30 35 0 5 10 15 20 25 30 0 Angle (deg) Angle (deg)
	125 MeV/u				
	BIC	35 ± 4	13 ± 6	70 ± 59	- 400 H
	QMD	39 ± 5	21 ± 10	73 ± 56	
	INCL	17 ± 2	25 ± 13	77 ± 75	
	145 MeV/u				
	BIC	24±4	11 ± 18	73 ± 44	
	OMD		20107	CO + 01	
	QMD	36 ± 6	38 ± 27	09 ± 21	
	INCL	$\frac{36\pm6}{13\pm2}$	38 ± 27 31 ± 25	69 ± 21 70±30	

6

Angle (deg)

Comments on angular distribution

- More forward angles (~10 degrees) agree very poorly
- Simulation has better agreement with Rovituso than Marafini
 - Rovituso measurements performed at approximately half thickness of BP
 - Marafini measurements just after BP
 - Model compounds
- INCL gives best agreement for ¹H (most abundant fragment)

7

CENTRE FOR

RADIATION

UNIVERSITY

Fragment build up curves

Rovituso et al. 2017, PMB

Summary

- Validation of Geant4 for helium ion therapy in terms of it reproducing three fragment measurements
- Angular distributions
 - All three models evaluated in Geant4 give very poor agreement with experiment for forward angles
 - Improvements to models desirable
 - INCL best reproduces ¹H fragments (most abundant fragment)
- Fragment yields
 - Must be very careful when comparing fragment yields

