Towards the emulation of BLOB, a nuclear interaction model, with Deep Learning

L. Arsini^{1,2}, B. Caccia³, A. Ciardiello², M. Colonna⁴, R. Faccini^{1,2}, S. Giagu^{1,2}, P. Napolitani⁵, F. Nicolanti^{1,2}, <u>C. Mancini-Terracciano^{1,2}</u>

 ¹Department of Physics, University of Rome "La Sapienza", Rome, Italy.
²INFN, Section of Rome, Rome, Italy
³Istituto Superiore di Sanità, Rome, Italy
⁴INFN, LNS, Catania, Italy
⁵IPN, CNRS/IN2P3, Orsay Cedex, France

Background: Nuclear interaction models are a key component in Monte Carlo (MC) simulations for Iontherapy [1]. Geant4 [2] is one of the most widely used MC toolkit, also for Ion-therapy simulations. Despite the relevance of the applications, Geant4 models have severe limitations in reproducing the secondary yield measures in ion interactions below 100 MeV/n [3]. To mitigate such a shortcoming, we interfaced a model well suited to describe these reactions, namely the BLOB ("Boltzmann-Langevin One Body") model [4], with Geant4, obtaining promising results [5]. However, the BLOB computation time is too large (several minutes to simulate one interaction) for medical applications. Thus, we developed a generative Deep Learning algorithm to emulate BLOB [6]; interfacing it with Geant4 will allow one to have predictions as precise as using BLOB, without its computing overhead.

Material and Methods: BLOB is among the most advanced transport approaches used to handle the first stage of nuclear collisions at a few hundreds of MeV/n and below. The BLOB final output is a Probability Density Function (PDF) of having a nucleon in a position of the phase space. The physical final state, i.e.: the fragments and their properties and the nucleons emitted in the first stage of the interaction, is sampled from such a PDF. We trained a Deep Learning algorithm, in particular a Variational Auto-Encoder (VAE), to emulate the BLOB final states and interfaced it with Geant4.

Preliminary results: We will present the preliminary results obtained coupling the VAE decoder with the Geant4 de-excitation model for the simulation of the interaction of 12 C with a fixed ^{nat}C target. We ported the decoder in ONNX, to interface it with Geant4 in C++. The code will be soon released, jointly with a container to run it.

[1] D W O Rogers. PMB, 51(13):R287-R301, 2006.

[2] S. Agostinelli et al. NIMA 506(3):250-303, 2003

[3] P. Arce et al. MedPhys, 48: 19-56 2021

[4] P. Napolitani et al. PhysLett B, 726:382-386, 2013

[5] C. Mancini-Terracciano et al. PhysMed 67, 116–122 2019

[6] A. Ciardiello et al. PhysMed 73, pp. 65-72 2020