Neutron shielding strategies for dose quantification in Neutron Capture Enhanced Particle Therapy

Marissa Kielly^{1,2}, Andrew Chacon², Anita Caracciolo³, Susanna Guatelli¹, Anatoly Rosenfeld¹, Marco Carminati³, Carlo Fiorini³, Mitra Safavi-Naeini²

¹Centre for Medical Radiation Physics, University of Wollongong, Australia ²Australian Nuclear Science and Technology Organisation, Australia ³Politecnico di Milano, Italy

Neutron Capture Enhanced Particle Therapy

Quality assurance is difficult in NCEPT → Prompt gamma detection!

cancer cells.

CENTRE FOR MEDICAL RADIATION PHYSICS

4

The photon and neutron mixed field

- Neutrons can interact to produce background counts in the photon spectrum
- May also cause activation of the detector/shield

Proposed solution:

- Position detector in forward-facing position
- Use temporal windows
- Include neutron/photon shielding

Shielding configurations

Simplified set

Full set

•

٠

Front	Side	Front	Side
0.41 cm polyethylene 0.04 cm gadolinium 0.04 cm Gd ₂ O ₃	 1.30 cm polyethylene 1.24 cm polycarbonate 1.26 cm hafnium 1.10 cm Gd₂O₃ 1.10 cm gadolinium 1.17 cm lead (1 TVL) 	 0.8 cm polyethylene 0.02 cm Gd₂O₃ 	 5 cm polyethylene 1 cm gadolinium 1.17 cm lead (1 TVL)
	D Ce		CENTRE FOR MEDICAL RADIATION PHYSICS

Measuring detector selectivity for CdTe – R_{TF}

⁴He beam

¹²C beam

Detector activation – CdTe detector

However, experimentally...

- Background spectrum contains a large peak at 478 keV
- Small increases in intensity cannot be seen – we need shielding!

How can we account for this?

- Model the room, so scattering is included
- Detector electronics can also be included in the model (contains boron)

UNIVERSITY

AUSTRALIA

OF WOLLONGONG

Conclusions

Shielding	Outcome
Increases false positives	Simulation model needs to be developed further, including PCBs
Decreases R _{TF}	Consider collimation strategies
Increases detector activation	Vary phantom to detector distance
@ cep	Australian Government Australian Government Australian Government

Thank you!

A/Prof. Mitra Safavi-Naeini, ANSTO

Dr. Andrew Chacon, ANSTO

A/Prof. Susanna Guatelli, UOW

Dist. Prof. Anatoly Rosenfeld, UOW

This work was undertaken with the support of the Australian Government Research Training Program Scholarship and the Australian Institute of Nuclear Science and Engineering (AINSE) Residential Student Scholarship

Marissa Kielly mlk565@uowmail.edu.au

Interaction	Energy Range	Geant4 Model
Radioactive Decay	N/A	G4RadioactiveDecayPhysics
Particle Decay	N/A	G4Decay
Hadron Elastic	0–100 TeV	G4HadronElasticPhysicsHP
Ion Inelastic	0–110 MeV 100 MeV–10 GeV 9.99 GeV–1 TeV	Binary Light Ion Cascade BIC FTFP
Neutron Capture	0–20 MeV 19.9 MeV–100 TeV	NeutronHPCapture nRadCapture
Neutron Inelastic	0–20 MeV 19.9 MeV–9.9 GeV	NeutronHPInelastic Binary Cascade
Neutron Elastic	0 eV–20 MeV 20 MeV–100 TeV	NeutronHPElastic hElasticCHIPS
Proton Inelastic	0–9.9 GeV	Binary Cascade

