Impact of intra-cellular radionuclide distribution in Targeted Alpha Therapy : a Monte-Carlo biophysical study in 3D multicellular model

Victor Levrague¹, Mario Alcoler-Avila², Lydia Maigne³, Michaël Beuve², Etienne Testa² and Rachel Delorme¹

Targeted alpha therapy context

Targeted alpha therapy (TAT) :

- Mean energies : 5-10 MeV
- Mean range : 40-100 µm (few cells)

Biophysical Monte-Carlo predictions :

- Low ranges : Need to take into account :
- heterogeneity of deposited energycell and tumor geometry
- **Different scales** : **nano**metric (DNA) and **micro**metric (cells)

Targeting molecule + radionuclide

Non-localized cancer sites

Impact of intra-cellular radionuclide distribution

- Few studies on the topic
- This work : Parametric study in multi-cellular model, with physical and biological indexes calculations

Simulation and analysis chain

Biophysical model : NanOx (1/2)

Biophysical model : NanOx (2/2)

- NanOx : Experimentally calibrated & validated for hadrontherapy
- Formalism adapted to consider energy loss by ions in nuclei

```
Cell Survival = f (\alpha, \beta, Ei, Ef)
```

NanOx output

Geant4 output

Simulation and analysis chain

Geometry generation : CPOP

95 μm radius Spheroid generated by CPOP

- Open-source tool that can generate highly compacted
 multi-cellular geometries
- Based on Geant4
- Realistic cell overlap management
- Example coming soon in official G4 release

Maigne et al. 2021

IV Geant4 International Conference, Naples, 24-26 October 2022

Monte-Carlo simulation : Geant4

- Alpha particles < 10 MeV, with electron cut
- G4EmStandardPhysics_option4 physics list

Ei (α) Εi (α) Εf (α)

• Output :

- Physical doses in **nuclei** and cells
- In (Ei) and out (Ef) energies of alpha particles in nuclei

Intra-cellular radionuclide distribution study

G4 - NanOx coupling calculations

Observables:

- **Cell survival** probabilities (HSG cell line)
- Tumor Control Probability
- Physical doses in nuclei and cells
- Cross-fire nucleus dose %

Simulation parameters

- Number of particles per cell: 42 (Chouin et al. 2012, murine treatment)
- Hypothesis: 100 % labeling
- Cell size : nucleus radius = 5.5 μm, cell radius = 6.9 μm
- Cell packing : 25 75 %
- Radionuclide used : ²¹⁰Po, ²¹¹At , ²¹³Bi
- Spheroid radius : 30 95 µm

Results : effects on cross-fire

Source compartment of alpha particles in cells

Less % cross-fire when particles are

Small parameters impact, except and small

13

Cytoplasm only distribution : **Nucleus only distribution :**

< 3 % mean nucleus physical dose

+ ~ 15 % mean nucleus physical dose compared to no internalization, in most cases

→ No influence of cytoplasm internalization

+ ~ 30 % mean nucleus physical dose for 25 % compaction spheroid and 30 µm spheroid radius

Significant effect of nucleus internalization. especially for low compaction and small spheroids.

Results : effects on nucleus physical dose

increase compared to no internalization

Results : biological effect

Tumor Control Probability always equal to 1, with 42 particles per cell

Irradiation conditions : ²¹¹At, 95 μm spheroid radius, 75 % compaction

 $TCP = \prod_{i=1}^{n} (1 - S_i)$

n

Highest differences at ~ 5 particles per cell

18-fold higher TCP between nucleus and membrane source

Low impact of cytoplasm internalization

High impact of nucleus internalization for low compaction spheroids and small (<50 µm radius) tumors, and when few radionuclides are labeled per cell

Article in progress

Perspectives

- Influence of cell line on our calculations
- Intra-tumoral radionuclide distribution study
 - \rightarrow variation of labeled cell %
 - \rightarrow cold regions of cells protected by fibroblasts

• Work with biologist teams that can achieve TAT experiments

Grenoble, France

Diffusion of Po-211

