

IV Geant4 International User Conference at the physics-medicine-biology frontier

Naples, 24 – 26 October 2022

ESTIMATION OF ENERGY IMPARTED

FROM IONIZATION-BASED MEASUREMENTS AT THE NANOMETRE SCALE

UNIVERSITY OF WOLLONGONG AUSTRALIA

A. Selva¹, D. Bolst², A. Bianchi¹, S. Guatelli², V. Conte¹

¹ INFN - Legnaro National Laboratories, viale dell'Università 2, I-35020 Legnaro, Italy
² Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia

MICRODOSIMETRY AT THE NANOMETRE LEVEL

Simulated volume: from 500 nm down to 25 nm

For small SV sizes (< 100 nm) proportionality between energy imparted and ionization yield may be lost! (Amols et al., 1990)

 $\varepsilon = \mathbf{X} \cdot \mathbf{v}$

Can we use a different conversion factor to calibrate these data to lineal energy?

THE SIMULATION SETUP

Geometry

- Liquid-water spheres immersed in water
- Sphere diameter I, 10, 100 nm

Physics

- Geant4-DNA EM processes
- Option 4, Option 2 physics lists
- No hadronic physics

Primary ions

- Protons and carbon ions
- Initial energy 1, 10, 100 MeV/u
- «Pencil-beam» and «extended-beam» geometry

Scoring

- Simultaneous scoring on energy imparted ε and ionization yield ν
- Calculation of mean values $\overline{\varepsilon}$ and $\overline{\nu}$

A NEW CONVERSION FACTOR: $\widetilde{\omega}$

$$\widetilde{\boldsymbol{\omega}} = \overline{\boldsymbol{\varepsilon}} / \overline{\boldsymbol{\nu}}$$

"Volumetric" analogue of the W-value

Analyse variations of $\widetilde{\omega}$ as a function of ion type, energy, SV size, beam geometry...

Ideally, the conversion factor should be independent of all these parameters

VARIATIONS OF $\widetilde{\omega}$ - PENCIL BEAM

- Independent on ion energy (< 1%)</p>
- Weakly dependent on ion type (± 5%)
- Dependent on SV size (~ 20%)

A. Selva et al., Radiat. Phys. Chem. 192, 109910 (2022)

IV GEANT4 INTERNATIONAL USER CONFERENCE

VARIATIONS OF $\widetilde{\omega}$ - EXTENDED BEAM

26/10/2022

IV GEANT4 INTERNATIONAL USER CONFERENCE

VARIATIONS OF $\widetilde{\omega}$ - "OPTION 4" VS "OPTION 2"

IV GEANT4 INTERNATIONAL USER CONFERENCE

PROBABILITY DISTRIBUTIONS

P(v)

Probability density distribution of energy imparted

CONTINUOUS!

 $f(\varepsilon)$

for each $(\nu - 0.5)\widetilde{\omega} < \varepsilon < (\nu + 0.5)\widetilde{\omega}$ $\nu \in \mathbb{N}$

 $f^*(\varepsilon) = \frac{P(\nu)}{\widetilde{\omega}(D)}$

600

CONTINUOUS!

IV GEANT4 INTERNATIONAL USER CONFERENCE

Probability distribution of ionization yield

DISCRETE!

9

COMPARISON OF PROBABILITY DISTRIBUTIONS (I)

IV GEANT4 INTERNATIONAL USER CONFERENCE

Ionization-based measurements can still be interpreted in terms of energy imparted, also at the nanometre scale...

- **Accuracy within 10%**, due to particle-type dependence
- Dependence on site size within **20%**

CONCLUSIONS Ш 26/10/2022 IV GEANT4 INTERNATIONAL USER CONFERENCE

- Primary ion vs secondary electron contribution
- "Broad-beam" geometry: new relativistic electron models
- Alpha particles

Thanks to all members of Task 6.2 for the valuable input

THE ROAD GOES ON...

Laboratori Nazionali di Legnaro

IV GEANT4 INTERNATIONAL USER CONFERENCE