

SIMULATION OF RADIO-INDUCED DNA DAMAGES AND THEIR REPAIR BY MEANS OF GEANT4-DNA MONTE CARLO TRACK STRUCTURE CODE

<u>Y. Perrot</u>, A. Le Tuan, Y. Thibaut, H. Tran, D. Sakata, S. Incerti and C. Villagrasa yann.perrot@irsn.fr

MODELLING IN RADIOBIOLOGY: A MULTI-SCALE APPROACH

GEANT4 INTERNATIONAL CONFERENCE AT THE PHYSICS-MEDICINE-BIOLOGY FRONTIER - NAPOLI 24-26 OCT. 2022

MODELLING IN RADIOBIOLOGY: A MULTI-SCALE APPROACH

GEANT4 INTERNATIONAL CONFERENCE AT THE PHYSICS-MEDICINE-BIOLOGY FRONTIER - NAPOLI 24-26 OCT. 2022

MODELLING IN RADIOBIOLOGY: A MULTI-SCALE APPROACH

NANODOSIMETRIC SIMULATION CHAIN

Simulation chain at the origin of dnadamage1 user example and based on Geant4-DNA (Geant4 11.0)

Includes physical, physico-chemical and chemical stages of the action of ionizing radiations

Validated for DSB induction for a variety of particles and LETs:

- Proton, alphas: Meylan et al., Sci. Rep. 7 (2017)
- Kilovoltage and megavoltage X-Ray beams: Tang et al., IJMS 20 (2019)

New features include:

- New nuclei geometries from the isochore theory: Thibaut et al., IJMS 23 (2022)
- Possibility to use Independent Reaction Time of the chermical step: IRT-sync implementation of Tran et al., Med. Phys. 48 (2021)
- Biological repair models

TARGET GEOMETRY

DNA IS THE MAIN TARGET

Creation of complete genome geometries (~6 Gbp) with DNAFabric software*

*Meylan S., Vimont U., Incerti S., Clairand I., Villagrasa C., Comput Phys Commun. 204:159 (2016)

- Importance of chromatin fiber compactionDamage induction
- Repair processes

Hetero and euchromatin is not randomly distributed

- Current developments consider a realistic distribution
- isochore family theory: Genome contains 5 families compaction,^{52,5%} each family is linked to a GC rate

GC profile – chromosome 41

Chemistry

First developments: Step by Step method

- Particle-continuum based, each individual molecule is simulated
- Simulation of diffusion controlled reactions based on full step-by-step Brownian dynamics
 Reaction Reaction rate (10⁹ M⁻¹s⁻¹)

Reaction	reaction rate $(10^{10}M^{-1} \cdot s^{-1})$
$H^{\bullet} + e_{aa}^{-} + H_2O \rightarrow OH^{-} + H_2$	2.65
$H^{\bullet} + OH^{\bullet} \rightarrow H_2O$	1.44
$H^{\bullet} + H^{\bullet} \rightarrow H_2$	1.20
$H_2 + OH^{\bullet} \rightarrow H^{\bullet} + H_2O$	$4.17 \cdot 10^{-3}$
$H_2O_2 + e_{aa}^- \rightarrow OH^- + OH^{\bullet}$	1.41
$H_3O^+ + e_{aa}^- \rightarrow H^{\bullet} + H_2O$	2.11
$H_3O^+ + OH^- \rightarrow 2H_2O$	14.3
$OH^{\bullet} + e_{aa}^{-} \rightarrow OH^{\bullet}$	2.95
$OH^{\bullet} + OH^{\bullet} \rightarrow H_2O_2$	0.44
$\mathbf{e}_{aq}^{-} + \mathbf{e}_{aq}^{-} + 2H_2O \rightarrow 2OH^{-} + H_2$	0.50

Reaction	Reaction rate (10 ⁹ M ⁻¹ s ⁻¹)		
2-deoxyribose + OH•	1.8		
Adenine + OH^{\bullet}	6.1		
Guanine + OH [•]	9.2		
Thymine $+ OH^{\bullet}$	6.4		
Cytosine + OH^{\bullet}	6.1		
2 -deoxyribose + e_{aq}	0.01		
Adenine + e_{aa}	9.0		
Guanine + e_{aq}	14.0		
Thymine $+ e_{aq}$	18.0		
$Cytosine + e_{aq}$	13.0		
2-deoxyribose + H^{\bullet}	0.029		
Adenine + H^{\bullet}	0.10		
Guanine + H^{\bullet}	-		
Thymine + H^{\bullet}	0.57		
Cytosine + H^{\bullet}	0.092		
$Histone + radical \rightarrow Histone$	-		

Recent developments: Independent Reaction Times approach

- N-body \rightarrow 2-body
- Comparison of reaction times for all pairs of radicals independently of the system
- Hybrid approach: Tran et al., Med. Phys. 48 (2021)

REPAIR MODELS

Model	ENDPOINT	Reference	Ινρυτ Δατα	VALIDATION EXPERIMENTAL DATA FROM LITERATURE
Local Effect Model	Non rejoined DSB	Tommasino et al (2013) Rad. Res. 180, 524-538	Simple and complex DSBs in 1 Mbp chromatin loops	- Stenerlow (2000): Fibroblast, α 40 keV/μm
Two Lesion Kinetic Model	Surviving fraction	Stewart (2001) Rad. Res. 156, 365-378	Simple and complex DSBs	- Belli (2000): Fibroblast, p 7.7 keV/μm - Netti (2004): Fibroblast, α 132 keV/μm
Belov model	DSB repair	Belov et al. (2015) J. Theo. Biol. 366, 115-130	Simple and complex DSBs	- Antonelli (2015): Fibroblast, p 28.5 keV/μm

STRAND BREAKS YIELD

Protons and alphas: 2.7-132 keV/μm

Direct SB:

- 17.5 eV in Sugar-Phosphat
- Saturation with increasing LET

Indirect SB

- Tchem = 5 ns
- 42% hydroxyl-Sugar reactions
- Decrease of indirect SBs with increasing LET

Good agreement IRT-sync / SBS

DOUBLE STRAND BREAKS YIELD

Fibroblast cell nucleus

Protons and alphas: 2.7-132 keV/μm

Sparse experimental data

Both methods SBS and IRT are in agreement with experimental data

IRSN

SIMPLE AND COMPLEX DOUBLE STRAND BREAKS YIELD

Fibroblast cell nucleus

- Protons and alphas: 2.7-132 keV/μm
- Saturation of simple DSB yield with increasing LET
- Linear evolution of complex DSB yield with LET on this range
- sDSB and cDSB calculation method provided as a deliverable of BioRadIII project

SURVIVAL FRACTION (TLK MODEL)

Fibroblast cell nucleus

- Protons 7.7 kev/μm and alphas 132 keV/μm
- Geant4-DNA+TLK: good agreement with experimental data

BioRadIII project (ESA funding)

TIME EVOLUTION OF γ-H2AX (Belov's model)

IRSN

CONCLUSIONS

- A simulation chain based on Geant4-DNA MC tool was tested for fibroblast cells from the generation of the initial DNA damage to its repair
- DSB yields and biological endpoints that have been implemented are in agreement with experimental data
- BioRadIII project:
 - The simulation chain will be publicly released next year
 - DNAFabric geometries of cell nuclei (endothelial, lymphocyte, fibroblast) with random distribution of hetero and euchromatin will be released next year

SIMULATION OF RADIO-INDUCED DNA DAMAGES AND THEIR REPAIR BY MEANS OF GEANT4-DNA MONTE CARLO TRACK STRUCTURE CODE

<u>Y. Perrot</u>, A. Le Tuan, Y. Thibaut, H. Tran, D. Sakata, S. Incerti and C. Villagrasa yann.perrot@irsn.fr

BioRadIII project (ESA funding)

