Development of Geant4 DICOM based dose calculation for Synchrotron Microbeam Radiation Therapy

J.R. Paino, M.J.Cameron, M.Large, M. Crowther, M.Barnes, E.Engels, J.A.Davis,

M.Tehei, S.Corde, S.Guatelli, M.Lerch

Australian Government

Synchrotron generated Microbeam Radiation Therapy

Commercial treatment planning system not suitable for our beam conditions

Dose rates > 5,000 Gy/s

Small beamlets $50 \ \mu m$

Mean energy $\approx 90 \ keV$

Goal to develop dedicated GEANT4 based dose engine to support pre-clinical trials.

Production of Synchrotron radiation

Validating energy spectrum

Validating microbeam dose deposition

Simulate dose deposition

Method used to prescribe dose in Engels et al 2020 (live rats), Davis et al 2021 (in-vitro cells), Lange et al 2022 (ex vivo hearts)

ICRP110_HumanPhantoms Advanced Example

M J Large et al 2020 J. Phys.: Conf. Ser. 1662 012021

Allows for simulations of voxelized phantoms

User needs to find their own way to convert DICOM \rightarrow GEANT4 compatible files

Combine accurate Synchrotron radiation production method with DICOM based voxelized phantom

Convert DICOM to GEANT4 compatible files

Custom Python code to assist user converting DICOM to G4 compatible files

Define custom materials

Semi-automated tumour contouring ('click and fill' in house python script)

Scorer resolution independent of DICOM resolution to score $50 \mu m$ microbeams

Each DICOM converted in < 10 minutes

Implemented for in-vivo rat brain tumour study

Simulation time ≈ 10 min using 20 CPUs for 200 million photons

Single user able to treatment simulate for all patients 'on the fly'

First in-vivo MRT study to provide DICOM based treatment simulations for each 'patient'

Target output in DICOM co-ordinates to be read in by image-guidance software SyncMRT

SyncMRT, M Barnes et al 2022. Synchrotron Rad. 29, 1074-1084

Implemented for in-vivo rat brain tumour study

Phantom simulated

Extract from text file

dicom frama

Tumour DVH

	2/0 21/ /20	
tumour voxels:	58	
tumour volume:	4.749 mm^3	b
treatment planning ovlume	25.302 mm^3	m
tumour located 9.404 to 13.061	mm below skin	Vo
tumour located 14.106 to 17.763	3 mm below bolus	of
volume dimensions simulated	120 80 80	uo
total volume simulated	768000 voxels	ŝĊţ
score in resolution	0.522 0.010 0.300 mm	Fr

270 217 720

Implemented for in-vivo rat brain tumour study

Used to verify assumptions made in earlier work with simple phantoms

Used to verify assumptions made in earlier work with simple phantoms

Future prospects

Implement method presented for upcoming experiments

Use this method as foundation for a MRT dose engine

Use to train dose engine based on Machine learning model (3D U-Net) - Look Mentzel et al (2022) Medical Physics, https://doi.org/10.1002/mp.15555

Additional slides

Experimental Validation

Will be verifying dose simulation in RDS Alderson Radiotherapy Phantom next week!

