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Context: Bremsstrahlungs

> External Bremsstrahlung (EB), the “well-known” Bremsstrahlung: emission of photons with
continuous energy spectrum due to deceleration of a travelling charged particle by another
charged particle (typically an electron by an atomic nucleus of the medium in which is
travelling)

> Internal Bremsstrahlung (IB), the “unknown” Bremsstrahlung: process accompanying B-decay,
consisting in emission of photons with a continuous energy spectrum from the parent
nucleus, due to the interaction of the B particle with its own parent nucleus [1,2].
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Background and aim of the study

> Internal Bremsstrahlung (IB) was widely studied in the past decades: KUB theory [1, 2] +
updated models [6-8] to calculate spectral distribution of IB photons, even if comparison
with measurements [9, 10] not always satisfactory

> However, currently IB is usually neglected in dosimetry and radioprotection studies when
estimating energy deposition due to B-decays; no Monte Carlo (MC) simulation software
accounts for 1B

> But is IB contribution to B-decay energy deposition effectively negligible?

> In some recent works, IB emission intensity was observed to significantly contribute to the
deposited energy for some high-energy B-emitting radionuclides: %Y, 32P [3-5]

> Dose-Point-Kernels (DPKs) are extensively used for the dosimetry of gamma and beta
emitters, and are usually computed with MC simulations, tallying the energy deposited
around a point source as a function of the radial distance R

> The aim of this study was to quantify, by means of MC simulations, the contribution of
IB photons to the DPKs of Y and 32P, and revise the DPK values accordingly
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Internal Bremsstrahlung spectra modeling

> In our previous works [3-5], we adopted IB photon spectral distributions, B(E), for %Y
and 3°P, obtained by fitting experimental data (+ theoretical models, if needed, to
extrapolate at lower or higher energies) available in literature with the following function:

B(E)=a- (e—bﬁﬁ—cET’ _ p—bES—cE}

> where: a = 25.9; b, ¢, band g fit parameters; £, = end-point energy of the B spectrum

> For %Y [3,4] > For 32P [5]
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Experimental verification

> We compared experimental measurements of the signal generated in a dose calibrator (well
ionization chamber for activity measurements) by a source of Y and 3P, with MC
simulations including and not including respective IB spectra contribution

> Including IB, good agreement with exp. when using the following IB spectra
modelizations: for Y, fit of exp. data from Venkataramaiah + Ford and Martin model [4];
for 32P, fit of exp. data from Liden and Starfelt [5]

> Not including IB, differences between exp. and MC up to -14% for °Y, up to -17% for
3P - IB emission contributes up to these values to the signal in the examined setup

Source | 1exe (PA/MBq) | 1B in MC | Iyc (pPA/MBq) | € (%)

= 0y 0.198 =+ 0.001 no 0.174 % 0.002 -12.1
\ ' 0V (shielded) ~ 0.192 + 0.001 no 0.166 + 0.002 -135

o % 0.198 + 0.001 yes 0.198 + 0.002 0.0
o 0Y (shielded) ~ 0.192 + 0.001 yes 0.189 + 0.002 1.6
o . 32p 0.1259 + 0.0005 no 0.1057 + 0.0010  -16.0
7 2P (shielded)  0.1222 + 0.0005 o 01013 +0.0010  -17.1

souree = F— 32p 0.1259 + 0.0005 yes 0.1302 + 0.0010 +3.4
& < 32P (shielded)  0.1222 + 0.0005 yes 0.1251 =+ 0.0010 +2.4
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Dose-Point-Kernel (DPK) estimation with GAMOS

> Dose-Point-Kernel (DPK) is defined as the energy deposited all around a radioactive point
source in a homogeneous medium, thus giving information on the absorbed dose as a function of
the distance from the source [11-13]

>  We computed DPKs for ?°Y and 3°P in water including and not including IB spectra
> MC simulations performed with GAMOS 6.2.0:

> Y and 2P decays simulated via [
RadjoactiveDecay GEANT4 module (NB it dose
not account for IB emission!); IB emission
simulated as an additive spectrum term to the
source, modelled as in our previous works

> Geometry: point source at the centre of
concentric shells of water (G4 WATER; d =1
g/cm3); shell thickness: 0.02 cm; shells’ radius:
min 0 cm, max 5 cm

> Scored quantity: energy deposited in each shell

> N. of events: 108 events, No variance reduction
techniques applied
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MY absorbed dose distribution
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32P absorbed dose distribution

> Absorbed dose (AD) estimated as a function of the
distance R from the source

> Neglecting IB emission (red line), comparing with 32P
DPK from Graves et al. (2019) [13], good agreement
found, since also Graves et al. neglected IB!

> When adding IB photons to the MC simulations
(blue line), for distances larger than 0.8 cm, AD
values are higher than the previously obtained ones

> |IB source term contributes up to 40% to AD at the
examined distances larger than the average range of
Bs from 32P.
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MY and 32P Dose-Point-Kernels
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MY and 32P Dose-Point-Kernels
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MY and 32P Dose-Point-Kernels
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What happens beyond the average range of B particles?

> Within the average range of the B particles emitted by °Y and 32P, the contribution of
External Bremsstrahlung (EB) photons to the energy deposited is negligible; adding IB photons
to the source term does not affect significantly this results

> However, for larger distances from the source, the energy deposition is mainly due to EB
photons generated by the interaction of B particles with the surrounding medium

> When adding IB photons to the source in MC simulation, at those distances a further
contribution comes from these photons

90Y source in water, d = 2 cm 32p source in water, d = 1 cm
> We Scored the energy ].e—ozfl||‘|||||||||||||\|||||‘\||||H‘\||‘\H‘|H§ 19—025\\\|\|\|\\\|||\‘\\|‘|\|‘|\|||\\\\||
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Conclusions

> Internal Bremsstrahlung (IB) is a process accompanying [-decay, usually neglected in
MC simulations

> Dose-Point-Kernels (DPKs) are extensively used for the dosimetry of gamma and beta
emitters, and currently are calculated neglecting IB

> A revision of Y and 3°P DPKs, including IB spectrum in MC simulation, provides results
significantly affected by the additive IB source term

> For distances from the source larger than the average range of B particles, the revisited
90Y DPK values are higher than the values currently used by 20-30%, while the
32p DPK are higher by 30-40%

> The inclusion of IB process in MC simulation, among the processes occurring during
the decay of B-emitting nuclides, is strongly advisable in order to obtain more
realistic estimations
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