

Monte Carlo Simulation for personalized dosimetry in radionuclide therapy

C. MACIS, E. TONINI, A. TURRA, M. BARTOLOMEI, G. DI DOMENICO

IV Geant4 International User Conference at the physics-medicine-biology frontier Oct 24-26, 2022 Napoli, Italy

Overview

Introduction

- Molecular Radiotherapy (MRT)
- Internal dosimetry
- Dosimetrical approaches
- Personalized dosimetry
- Results presentation
- Conclusion & future perspectives

Molecular Radiotherapy

- **Molecular radiotherapy** (**MRT**) is a treatment that deliver dose to a tissue through the administration of radiopharmaceuticals that interacts with a molecular receptor.
- To perform dosimetry calculation for MRT it is necessary:
 - quantitative imaging of the patient at certain time points;
 - modelling the distribution of activity within the patient over time from these images;
 - converting this cumulated activity in different regions into an absorbed dose.

Lu-177				
Electrons		Photons		
Avg. Energy [keV]	Electrons per 100 disint.	Energy [keV]	Photons per 100 disint.	
47.6	11.6	71.6	1.7E-1	
78.6	0.01	112.9	6.2	
111.7	9.1	136.7	4.7E-2	
149.4	79.3	208.4	10.4	
	4	249.7	2.0E-1	
		321.3	2.1E-1	

nera-nostic

- In this study, we present how we have approached to the dosimetry evaluation for:
 - 177Lu-Dotatate is a radiolabelled peptide designed to target and suitable for neuro-endocrine tumours (NETs)

Dosimetric methods

Method	Advantages	Drawbacks
S value approach	Easy, fast, commonly used and generally accepted	Phantom-based, spherical approximation for targets.
Dose kernel approach (voxel dosimetry)	Patient-specific, tissue inhomogeneities are taken into account	S values must be calculated for each nuclide and each tissue.
Monte Carlo simulations	Very accurate	Time-consuming, not applicable for clinical routine.

- Different softwares are able to perform dose estimations, according to these methods:
 - **1. HMS® OLINDA/EXM 2.0** (*S values approach model-based*);
 - 2. MIM® MRT (both *S* values and dose kernels approach image-based);
 - **3. DOSIsoft PLANET® Onco Dose** (*MIRD schema image-based*)

MIRD dosimetry

- According to MIRD pamphlet n° 21 [2], mean absorbed dose is defined in the following way:
 - $\overline{D}(r_T) = \sum_{r_S} \int_0^{+\infty} dt A(r_S, t) \cdot S(r_T \leftarrow r_S, t)$

where S values are defined in the following way:

•
$$S(r_T \leftarrow r_S, t) = \frac{1}{m(r_T, t)} \sum_i E_i Y_i \phi(r_T \leftarrow r_S, E_i, t)$$

- and $A(r_s, t)$ is activity $(m(r_T, t))$ is target region mass, E_i is the energy per decay, Y_i is number of i-th nuclear transitions per nuclear transformation and ϕ is absorbed fraction).
- In nuclear medicine, **SPECT/CT images** are used to provide activities at each time point.

S values approach (MIRD method)

If we assume S values to be time-indipendent, then they can be brought out of the integral in time, and mean absorbed dose [1], by a target region r_T due to the presence of a source region r_S, can be calculated with the following equation:

$$\overline{D} = \sum_{r_S} \tilde{A}(r_S) \cdot S(r_T \leftarrow r_S)$$

• where $\tilde{A}(r_S)$ is the cumulated activity:

- $\tilde{A}(r_S) = \int_0^{t_D} dt A(r_S, t)$
- S values are obtained with Monte Carlo simulations, performed on phantoms.

6

Dose kernel approach (voxel dosimetry)

▶ In the limit of continuos space, the summation over r_S becomes an integral:

$$\overline{D}(r_T) = \int_0^{+\infty} dt \int d^3 r_S A(r_S, t) \cdot S(r_T - r_S, t) = \int_0^{+\infty} dt \, \dot{D}(r_T, t)$$

- That's why it's also called *«convolution method»*.
- SPECT/CT returns activity distribution with 3D matrix (voxel).
- Convolution calculation is performed for each voxel.
 - Actually, from voxel dosimetry we get **dose rates**
 - Data must be fitted, and the function is then integrated, in order to get doses.

Personalized dosimetry

8

• To develop a patient-specific dosimetry:

- Dose kernels approach, to provide doses in volumes of interest (kidneys & target).
- Monte Carlo code (dosimetry gold standard), in order to get doses in the same regions.
- Ensemble made up of 7 patients (FENET sperimental protocol, 5 SPECT/CT images, for each one).
 - To validate dose kernel results with Monte Carlo ones.

SPECT/CT data

Lu-177 DVK in water

Dose Rate 3D distribution on CT data

Photons and electrons tracking

Results: GATE DVK calculation (1) 10

Results: GATE DVK calculation (2)

Results: GATE MC simulations (1)

12

- GATE is able to perform dose calculations by simply simulating Lu177 decay within human body.
- SPECT/CT images must be given, as input, to the simulator: SPECT image will define where actually is the radiation source confined; CT image with which materials is the radiation interacting.

GATE inputs: CT and SPECT volumes

GATE ouput: 3D Dose distribution

Results: GATE simulations (2)

 From dose rate data, we can get dose estimations in ROIs by calculating the area under a fitted curve.

13

 Usually, it is assumed that the function, which fits data, is a linear combination of two decreasing exponentials:

$$\dot{D}(t) = A \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$$

Integrating the function, we finally get doses in kidneys and target.

Results: dose kernel approach (voxel dosimetry) (2)

Target - Voxel vs MC

After dose rate maps are obtained, basically the workflow is identical to GATE one.

Results: comparison with platforms (2) 15

Target 16.0 Target dose convolution (Gy) = Target dose GATE (Gy) = Olinda/EXM 2.0 14.0 12.0 10.0

Agreement between dose kernel approach and GATE.

- HMS® OLINDA/EXM 2.0 is **not always** in agreement with voxel dosimetry and Monte Carlo simulations.
- Difficulties arise when dealing with small targets.

Conclusions & future perspectives

- 16
- Results obtained with voxel dosimetry approach and GATE are in agreement, both for kidneys and targets.
 - On average, HMS® OLINDA/EXM 2.0 is **not** in agreement with these two approaches.
- This approach can be used, in principle, also for whatever nuclide
 → feasible way to provide precise dose estimations.
- Image-based dosimetry allows a patient specific dose estimation → planning and providing personalized treatments.