

<u>Daniele Pistone^{1,2}</u>, Lucrezia Auditore^{1,2}, Antonio Italiano^{2,3}, Silvano Gnesin⁴, Francesco Cicone^{5,6}, Giuseppe Lucio Cascini^{5,6}, Ernesto Amato^{1,2}

¹ BIOMORF Department, University of Messina, Italy

GEANT4

- ² INFN, Section of Catania, Italy
- ³ MIFT Department, University of Messina, Italy
- ⁴ IRA, Lausanne University Hospital and University of Lausanne, Switzerland
- ⁵ Dep. of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Italy
- ⁶ Nuclear Medicine Unit, University Hospital "Mater Domini", Catanzaro, Italy

Università degli Studi di Messina

Oct 24 – 26, 2022

Context

- Prostate-Specific Membrane Antigen (PSMA) radiolabelled ligands are used for diagnosis and therapy of prostate cancer
- Salivary glands (SGs) also exhibit high PSMA-ligands uptake → are the doselimiting organ in PSMA-targeted therapies
- SG dosimetry is usually performed adopting simplified approaches (e.g. organ-level MIRD) and approximated geometries (e.g. SGs treated as a unique organ)

Boxtel et al. 2020 *Theranostics* **10** 2273-2283

Aim of the study

- Perform 3D voxel-level patient-specific dosimetry of salivary glands ¹⁸F-PSMA-1007 PET/CT:
 - Separately for left and right parotids and submandibular glands
 - Using GATE/GEANT4 direct Monte Carlo simulations with tomographic imaging as input
- > Compare with other simplified dosimetric methods:
 - > Spherical method of OLINDA/EXM 2.1
 - > Ellipsoidal method by Amato et al. [1]
 - MIRD approach with OLINDA's and OpenDose's organ-level S-factors

[1] Amato et al. 2014 AAPP 92(1) A1, https://doi.org/10.1478/AAPP.921A1

Patient data

- 5 patients with prostate cancer recurrences enrolled ("Mater Domini" Hospital of Catanzaro, Italy)
- Each one underwent 3 sequential PET/CTs of head-neck at 30 min, 2 h and 4 h after ¹⁸F-PSMA-1007 injection

VOIs segmentation and time-activity analysis

- Morphologic VOIs segmentation on 30 min CT (manual)
 - > \rightarrow vol. and mass of SGs (density 1.045 g·cm⁻³ from ICRP 89)
- Functional VOIs segmentation on each ¹⁸F-PSMA-1007 PET (thresholding: 25% of the max A(t) in SGs [2])
 - For simplified methods:
 - > \rightarrow total normalized activity (A(t)/A_{admin}) in each VOI
 - ➤ Time-Integrated Activity Coefficients (TIACs) via trapezoid + physical decay tail integration

[2] Hobbs et al. 2013 *Q J Nucl Med Mol Imaging* **57**(1) 79–91

VOIs segmentation and time-activity analysis

- Morphologic VOIs segmentation on 30 min CT (manual)
 - > \rightarrow vol. and mass of SGs (density 1.045 g·cm⁻³ from ICRP 89)
- Functional VOIs segmentation on each ¹⁸F-PSMA-1007 PET (thresholding: 25% of the max A(t) in SGs [2])
 - > For simplified methods:
 - > \rightarrow total normalized activity (A(t)/A_{admin}) in each VOI
 - ➤ → Time-Integrated Activity Coefficients (TIACs) via trapezoid + physical decay tail integration
- Purpose:
 - Take into account activity spill-out and non-optimal spatial matching of PET activity distribution with respect to CT morphology

[2] Hobbs et al. 2013 *Q J Nucl Med Mol Imaging* **57**(1) 79–91

GATE/GEANT4 Monte Carlo simulations (1/3)

Monte Carlo simulations with GATE 9.1 (GEANT4 10.7) using tomographic imaging as input

- CT → voxelized phantom of patient's body: HU to density conversion via Automated HU stoichiometric calibration according to [3], density tolerance of 0.01 g/cm³, materials in Tab.
- ▷ PET → radionuclide (¹⁸F) spatial decay probability via *linear translator* of *imageReader*

(g)	G4 Materials (ICRP)	HU intervals	ρ (g/cm³)
At 2	AIR	$HU \leq -900$	$\rho \leq 0.10$
dens	LUNG	$-900 < HU \leq -150$	$0.10 < \rho \leq 0.85$
	ADIPOSE_TIS.	$-150 < HU \leq -50$	$0.85 < \rho \leq 0.94$
	SOFT_TIS.	$-50 < HU \leq 290$	$0.94 < \rho \leq 1.2$
–1000 0 1000 2000 3000 HU	BONE_CORT.	HU > 290	$\rho > 1.2$

[3] Schneider et al. 2000 Phys Med Biol 45 459-478

Daniele Pistone - Internal dosimetry of salivary glands in PSMA-targeted PET/CT: a Monte Carlo based study

GEANT4

GATE/GEANT4 Monte Carlo simulations (2/3)

Monte Carlo simulations with GATE 9.1 (GEANT4 10.7) using tomographic imaging as input

- Simulations settings:
 - > ¹⁸F decays: *G4RadioactiveDecay*
 - Physics List: G4EmStandard_opt4
 - range cuts: 0.1 mm
 - absorbed dose scoring: *DoseActor* with *MassWeighting* algorithm, CT resolution
 - > $N_{evts} = 2.10^8$ for each simulation
- > For each time-point: absorbed dose rate $(\dot{D}(t))$ map $\dot{D}^{ijk}(t) = D_{MC}^{ijk}(t) \cdot A_{FOV PET}(t) / N_{evts}$

GATE/GEANT4 Monte Carlo simulations (3/3)

Monte Carlo simulations with GATE 9.1 (GEANT4 10.7) using tomographic imaging as input

Average D(t) calculated in SG functional VOIs \triangleright (with possible air and bone voxels excluded) + applying corrective factor for mass:

 $\langle \dot{D}(t) \rangle_{gland} = \langle \dot{D}^{ijk}(t) \rangle_{funct VOI} \cdot (Vol_{funct VOI}/Vol_{morph VOI})$

2

imes10⁻⁶

.5

0.5

Average Dose rate (Gy/s)

Average D via trapezoid + phys. decay tail integr. \triangleright

Simplified dosimetric methods for comparison (1/2)

- Calculates average self absorbed dose $(\langle D \rangle)$ to sphere of ≻ homogeneous material and density and uniform activity
- Each SG treated as individual sphere of soft tissue ≻
- Volume and mass adjusted to patient's ones from ⊳ morphologic segmentations
- TIACs deduced from ¹⁸F-PSMA-1007 PETs entered in ⊳ the software for each gland
- \rightarrow Average absorbed dose to each SG and to union of \triangleright the four glands (tSG) calculated

$$\langle D \rangle_{tSG} = \frac{\sum_i m_i \langle D \rangle_i}{\sum_i m_i}$$

i = individual SG

[1] Amato et al. 2014 AAPP 92(1) A1, https://doi.org/10.1478/AAPP.921A1

Daniele Pistone - Internal dosimetry of salivary glands in PSMA-targeted PET/CT: a Monte Carlo based study

(SM) Spherical method of OLINDA/EXM 2.1 > (EM) Ellipsoidal method by Amato et al. [1]

- Similar to spherical method but using ellipsoids ⊳
- Analytic model, from GEANT4 simuls., implemented ⊳ on spreadsheet employing emission spectrum of radionuclide (from http://www.doseinfo-radar.com/)
- Inputs: ellipsoid axes, density, TIAC, injected activity ⊳
- Ellipsoids' axes deduced exploiting 3D Slicer: \triangleright
 - Labelmap statistics tool \rightarrow Oriented Bounding Box diameters (*OBBd*) of the SG VOIs \rightarrow actual axes (a) deduced as:
 - $a = OBBd \cdot \sqrt[3]{Vol_{OBB \ ellipsoid}/Vol_{morph \ VOI}}$
 - \rightarrow implemented ellipsoid has same volume (and mass) as that of the morphologic gland

OBB = smallest non-axis aligned box encompassing a VOI

Simplified dosimetric methods for comparison (2/2)

Organ S-Factors MIRD approach

Average absorbed dose to tSG following the organ-level MIRD formalism:

$$D_{(T \leftarrow S)} = S_{(T \leftarrow S)} \cdot A_{adm} \cdot TIAC_{(S)} \qquad S = \text{source}$$

$$T = \text{target}$$

$$\succ \quad S_{(T \leftarrow S)} = \sum_i y_i E_i \Phi_{i(T \leftarrow S)}$$

where Φ_i = Specific Absorbed Fraction (SAF, kg⁻¹), y_i = yield (Bq^{-1.}s⁻¹) and E_i = energy (J) for radiation type /

- Using the S-factors provided by:
- (S-O) OLINDA/EXM 2.1: calculated with \triangleright NURBS voxel-based adult male phantom adjusted to ICRP 89 masses [4]
- **(S-OD)** OpenDose collaboration: calculated with \triangleright ICRP 110 voxel-based adult male phantom [5,6]

The following source-target setups were investigated:

OLINDA

- S-01: tSG only source and target
 - **S-O2**: S-O1 + additional contrib. of remainder of body (RB) as source, using $TIAC_{RB} =$ $TIAC_{WB} - TIAC_{tSC}$, with $TIAC_{WB} = 2.64$ h (¹⁸F's τ) [7] (in absence of whole-body imaging, assumption of phys. dec. only, no bio. wash-out)

OpenDose

- **S-OD1**: tSG only source and target
- **S-OD2**: same as S-O2 with OpenDose S-fact.
- **S-OD3**: S-O1 + additional contrib. of remainder of head (RH) as source, deducing $TIAC_{RH} = TIAC_{PET FOV} - TIAC_{tSG}$ from scans (as in slide 4)
- In all the cases, correction for mass applied OpenDose source $\langle D \rangle_{tSG} = D_{(T \leftarrow S)} \cdot (m_{tSG \ phantom} / m_{tSG \ patient})$

Coronal view of organs adopted

- [4] Stabin and Siegel 2018 J Nucl Med 59 154-160 https://doi.org/10.2967/jnumed.117.196261
- [5] Chauvin et al 2020 J Nucl Med 61(10) 1514-1519 https://doi.org/10.2967/jnumed.119.240366
- [6] https://www.opendose.org/ [7] Giesel et al 2017 Eur J Nucl Med Mol Imaging 44(4) 678-688 https://doi.org/10.1007/s00259-016-3573-4

Results: MC vs simplified methods, total SG VOI

 $\langle \varepsilon \rangle$ -13.0

-13.4

-20.7

-86

-15.5

5.7

-7.2

SD

2.8

2.9

5.4

5.3

3.7

6.6

5.0

MC

SM

EM

For total salivary gland VOI:

- All methods except S-OD2 underestimate w.r.t MC \triangleright
- Average relative percent differences (ε) and standard \triangleright deviation (SD) among patients:

(ת) (ת)	method
$\varepsilon_{\rm W} = 100 \cdot \frac{\langle D \rangle_X - \langle D \rangle_{MC}}{\langle D \rangle_X - \langle D \rangle_{MC}}$	SM
$\langle D \rangle_{MC}$	EM
X = simplified dosimetric method	S-01
	S-02
	S-OD1

Causes of discrepancies w.r.t. MC

- No cross-dose from activity outside glands (SM, EM, S-01, S-0D1)
- Simplified gland geometry (SM, EM)
- Different voxel geometries in \triangleright anthropomorphic phantoms w.r.t. patient (S-O and S-OD)
- Uniform activity within the glands (all)

total Salivary Gland VOI

Daniele Pistone - Internal dosimetry of salivary glands in PSMA-targeted PET/CT: a Monte Carlo based study

S-OD2

S-OD3

Results: MC vs simplified methods, individual SGs

For individual salivary glands:

- Both spherical method (SM) and ellipsoidal method (EM) underestimate w.r.t. MC, bewteen -20% and -6%
- > Average relative percent differences (ε) and standard deviation (*SD*) among patients:
 - > $\langle \varepsilon \rangle_{SM} = -14.5\%$, $SD_{SM} = 3.2$
 - > $\langle \varepsilon \rangle_{EM} = -15.1\%$, $SD_{EM} = 3.6$

Causes of discrepancies w.r.t. MC

- no cross-dose from activity outside glands
- simplified geometry of the glands
- uniform activity within the glands

$$\varepsilon_X = 100 \cdot \frac{\langle D \rangle_X - \langle D \rangle_{MC}}{\langle D \rangle_{MC}}$$

X = simplified *dosimetric method*

Parotid Right

Results: comparison among individual SGs

For each method enabling dose estimation for individual SGs (MC, SM, EM):

- Non-negligible differences of absorbed dose in individual salivary glands
- Differences with respect to tSG between -50% and +65% with high intra- and inter-patient variability

Conclusions and perspectives

- General trend: simplified methods underestimate absorbed dose in salivary glands (SGs) with respect to MC for ¹⁸F-PSMA PET dosimetry (except for method S-OD2)
- Average discrepancies w.r.t MC within 10% only with methods accounting for cross-dose from activity outside glands (S-O2, S-OD2, S-OD3)
- ➤ MC and methods enabling dosimetry for individual SGs (SM, EM) highlight patient-specific heterogeneous dose distribution in the four SGs considered (parotids and submandibular) → considering only "total SG" can be a strong approximation (overestimating or underestimating dose to individual SGs)
- Studies continuing on ¹⁸F-PSMA-1007 dosimetry, trying to quantify the contribution of the different causes of discrepancies w.r.t. MC:
 - patient's SGs masses w.r.t. standardized masses, cross-dose from activity outside glands, simplified geometry of the glands, uniform activity within the glands
- Future perspectives: extend this kind of study to therapeutic radionuclides and radiopharmaceuticals
- Paper containing the reported study currently under review, provisional version on arXiv: <u>https://doi.org/10.48550/arXiv.2210.01616</u>

Acknowledgements

- We acknowledge the CINECA award under the ISCRA initiative, for the availability of high \triangleright performance computing resources and support (MIRACLE project, Marconi100 and Galileo100 supercomputers)
- Special thanks to all the colleagues collaborating in this study, from:
 - > University of Messina and INFN Catania: Prof. Ernesto Amato, Dr. Lucrezia Auditore, Dr. Antonio Italiano
 - > University of Catanzaro: Dr. Francesco Cicone, Prof. Giuseppe Lucio Cascini
 - University of Lausanne and CHUV: Dr. Silvano Gnesin

THANK YOU FOR YOUR ATTENTION!

Daniele Pistone, PhD email: daniele.pistone@unime.it

Università degli Studi di Messina

