Internal dosimetry of salivary glands in PSMAtargeted PET/CT: a Monte Carlo based study

D. Pistone^{1,2}, L. Auditore^{1,2}, A. Italiano^{2,3}, S. Gnesin⁴, F. Cicone^{5,6}, G.L. Cascini^{5,6}, E. Amato^{1,2}

¹BIOMORF Department, University of Messina, Messina, Italy

²INFN Section of Catania, Catania, Italy

³MIFT Department, University of Messina, Messina, Italy

⁴ IRA - Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

⁵Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro,

Catanzaro, Italy

⁶Nuclear Medicine Unit, University Hospital "Mater Domini", Catanzaro, Italy

Background: Prostate-Specific Membrane Antigen (PSMA) targeted radiopharmaceuticals are used for diagnosis and therapy of prostate cancer (PS). Salivary glands (SGs) exhibit high PSMA uptake, and represent the dose-limiting organ in PSMA-targeted therapies. SGs dosimetry studies are usually carried out with simplified approaches such as organ-level MIRD formalism, where SGs are often treated as a unique organ. Aim of this work was to perform a 3D patient-specific dosimetry separately for right and left parotids and submandibular SGs in ¹⁸F-PSMA-1007 PET/CTs, by means of direct Monte Carlo (MC) simulation, and to compare it with simplified approaches.

Material and Methods: PET/CTs of patients with biochemical PS recurrence, acquired at 3 time points after ¹⁸F-PSMA-1007 administration, were used as input for Geant4-based GATE MC simulations to evaluate 3D dose rate maps. After segmentation of SGs volumes of interest (VOIs), their average absorbed doses (AADs) were calculated via trapezoid + physical decay tail integration. PET activity spill-outs with respect to morphologic SGs were taken into account by using VOIs segmented on functional imaging via threshold method (25% of the max. PET activity). In addition, the dosimetry was carried out using: A) spherical model of OLINDA/EXM 2.1, B) ellipsoidal model by Amato et al. [1], C) MIRD formalism with OLINDA and D) OpenDose S-factors. In all methods some degree of patient-specificity was introduced by adjusting volume, mass and activities of the SGs.

Preliminary results: Depending on the patient, *AAD* in the right and left counterpart of the same SG can differ up to 50%. A and B systematically underestimate SGs *AADs* with respect to MC by 10-15%; C and D can underestimate even more, depending on the specific patient.

[1] Amato et al. *AAPP Phys Math Nat Sci*, Vol 92 No 1 (2014), pp. A1-1 - A1-8