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Entangled double Compton scattering ?-;»V

In medical PET, annihilations produce two y in an entangled polarization state.
Double Compton scattering cross section for the entangled state:

d2 04
Todn. = 15 (Ka(B182) — Ky(B; 02) cos(2A¢))

e.g. Pryce and Ward 1947 Nature 160 : 435

cos(2A¢) modulation: amplitude increased by the entanglement
Enhancement factor: R = P(Ad = +£90°)/P(Ad = 0°)
Peaks at 2.85 for 8, = 6, = 81.7°
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= Quantum entanglement effects in double [ Creation of two entangled gammas J
Compton scattering of annihilation ¥y added n, R

to the Livermore physics models

Quantum entangled Geant4 (QE-Geant4)
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Validation - No scatter before detection
LYSO
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22Na at 2.4 MBq

Back-to-back high density LYSO detectors (7.1 g/cm3) separated by 140 mm
8 x 8 arrays of 3 x 3 x 50 mm3 crystals

Geant4 and experimental data analysed with the same code and cuts




Validation - No scatter before detection 7-;:\} W
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= LYSO directly images the cos(2A®) distribution, R = 1.56
= The experimental data:

— agree with QE-Geant4 (R = 1.54)

— clearly disagree with unentangled Livermore polarised Geant4 (R = 1.25)




Testing the entanglement loss assumption #2

Compton

= After a 6~45° scattering, the A correlation:
— agrees with unentangled Geant4

— is lower than the back-to-back
(entangled) case

= Dependence on 0 ? Data for smaller 0 are
being analysed

Normalised Coincidence Count Rate
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= Addition of an active LYSO scatterer and
rotation of one detector by 45°

= Comparing A = ¢ — P, with the back-
to-back setup and non-entangled Geant4

=

-to-back data

-to-back QE-Geant4

ttered data

cattered Pol-Geant4
attered Unpol-Geant4
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Benefits of QE-PET

O

= Toillustrate the interest of the quantum
entanglement in PET, we produced images from
a QE-Geant4 simulation of a preclinical system

= Focus on double Compton scattering
coincidences (see illustration)

= Flag the true (entangled) and random
(unentangled) coincidences

= Filtered back projection

Geant4 simulation: NEMA-NU4
( , hot rods),




Benefits of QE-PET - scatter coincidences
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|AD| distribution from the preclinical PET simulation
250003—
s | cos(2A¢) modulation from the
15000 (entangled) true coincidences
100003—
e —_—————— -1 Baseline from the (unentangled)

= 1 T R ™y~ random coincidences

Ad

Applying a window around:
— |AD| = 90° vyields the highest true fraction
— |A®| = 0° yields the lowest true fraction




Benefits of QE-PET - random coincidences

= Profiles for the highest/lowest true fraction |A®| windows

Intensity (arb.)
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= Random/true coincidence profiles extracted using these |AD|
profiles and weighting factors from QE-Geant4
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Conclusion

= Entanglement effects in double Compton scattering of annihilation
gammas were modelled with Geant4

= |mproves the realism of the PET simulations. Ongoing work to check the
impact on the scanner hit position in case of double Compton scattering

= |f we observe that the entanglement is not completely lost at low
scattering angles, we will upgrade QE-Geant4 to reproduce the effect of the
“residual” entanglement

= Proof-of-principle with a preclinical acquisition - spatially resolved
extraction of both the shape and magnitude of the random background




Verification and impact of QE-Geant4

sz 1= &

i is=
= QE-Geant4 reproduces accurately the N 17
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