Geant4 applications in MRI-guided x-ray and proton beam therapy

Brad Oborn^{1,2,3}

¹Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW 2522 Australia

²Helmholtz-Zentrum Dresden-Rossendorf- Institute of Radiooncology-OncoRay, Radiooncology, Dresden, Germany

³Illawarra Cancer Care Centre(ICCC), Wollongong Hospital, NSW 2500 Australia

IV Geant4 International User Conference, Naples, Oct 24-26th 2022

Background: MRI guided radiotherapy (x-ray therapy)

INSTITUTE OF PHYSICS PUBLISHING

PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 49 (2004) 4109-4118

PII: S0031-9155(04)80001-0

- MRI guided Radiotherapy was first seriously envisaged around 2004
 - 6MV Linac + MRI scanner
 - Geant4 was used to examine the possible dose changes
 - 6MV x-ray beam in a 1.5 T magnetic field

Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field

B W Raaymakers¹, A J E Raaijmakers¹, A N T J Kotte¹, D Jette^{2,3} and J J W Lagendijk¹

Integrated MRI accelerator: dose deposition in a magnetic field

4111

Figure 1. Artistic impression of an integrated MRI accelerator.

Fast forward to now...

- This is a major direction in modern radiotherapy
- There have been a few dosimetry surprises along the way
- Monte Carlo methods have been basically the only option for accurate dose calculations

Background: MRI guided radiotherapy (particle/proton therapy)

IOP PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 53 (2008) 5615-5622

doi:10.1088/0031-9155/53/20/003

- MRI guided proton therapy: 2008
 - Proton + MRI scanner
 - Geant4 was used to examine the possible dose changes
 - Proton beam in 0-3 T magnetic field

Feasibility of MRI guided proton therapy: magnetic field dose effects

B W Raaymakers, A J E Raaijmakers and J J W Lagendijk

Figure 3. The dose distribution in a homogeneous water phantom for B=0 T (a), 0.5 T (b) and 3.0 T (c) and the central depth dose profiles through the dose distributions (d). Note that there are actually three overlapping lines in (d).

MRPT prototypes and research hardware

1. Dresden (OncoRay): 0.22 T MRI + horizontal PBS beam line (protons)

2. Heidelberg (HIT): 0.25 T MRI + horizontal PBS beam line (multi-ions)

3. Dresden (OncoRay): line (protons)

4. Vienna (MedAustron): 0.33 T MRI + horizontal PBS beam small 1 T research dipole magnet + PBS beam line (multi-ion)

- Much more complicated than MRI-linacs
- First patient treatment planned for OncoRay 2023-2024

Geant4: Modelling MRI-guided radiotherapy

- Geant4 is a toolkit for radiation transport only
 - No complicated magnetic field modelling
 - Need to import 3D field maps
 - Generate 3D maps in finite element software
- Purging Magnet (Advanced Example) ideal for reading in 3D variable magnetic fields
- We are interested in dose changes, beam transport changes
 - SteppingAction class very useful

My Modelling tools and workflow

- Matlab
 - overarching toolbox
 - creates COMSOL model
 - creates Geant4 geometry file
 - data analysis
 - visualisation
- COMSOL Multiphysics
 - finite element models
 - magnetic fields
- Geant4
 - Monte Carlo simulations
 - radiation transport
 - B-field data from COMSOL model
- Blender (open source rendering)
 - pretty pictures!

Modelling workflow

- Geometry registration (Matlab)
 - pdf files, some CAD files
 - mostly manually recreated with in-house definitions
 - fundamental boolean solids
- Magnetic Fields (COMSOL)
 - Non-linear solver
 - B-H or magnetization curves
 - electric current sources
 - steels and coil currents important
- Radiation transport (Geant4)
 - geometry location and composition important
 - magnetic field data from COMSOL
 - tedious process linking static data between codes!

Part 1: MRI-Linac Modelling

- Australian MRI-Linac Program
 - 1 T split bore MRI
 - 6MV Linac
 - 120 Leaf MLC
- About 4 years part time to develop fully benchmarked model

Magnetic field surrounding a phantom: 6 MV beam $\rightarrow \vec{B} = 0.5 \text{ T}$ Couch Cutaway: Generic Inline MRI-linac $\uparrow \perp \vec{B} = 0.5 \text{ T}$ ± **B** = 0.5 T

Its all about the secondary electrons!

What about the full beam transport: inline orientation system

- The fringe field collects and focuses electron contamination
- This was an important discovery with major implications

Electron contamination: inline system

- Skin dose increases of 100-400%
- Various possible workarounds

Oborn *et al.*, Med. Phys. 41 (5), May 2014, 051708-1

Medical Physics

(CCPM), and the International Organization for Medical Physics (IOMP) through the AIP Publishing

MRI-Linac: skin dose reduction simulations (PhD student projects)

- 1. Bolus above patient and Off-axis treatments
 - Elizabeth Patterson
- 2. Electron deflector and helium zone
 - Madiha Tai

Part 1: MRI-linac modelling - summary

- Geant4 was the first code to be used to investigate the basics of dose changes due to magnetic fields in 2004
 - It has been used extensively at the CMRP over the last 14 years for studying various elements of MRI-Linac radiotherapy
 - It is helping guide the direction taken for the first patient treatments on the Australian MRI-linac system
 - Skin dose predictions very critical
 - Treatment plans will also be checked using Geant4

Part 2: MRI-proton modelling

Topic 1: Beam line transport

- Sydney MRI scanner
- First realistic look at beam transport through the MRI fringe field
- Implications: must use pencil beam scanning
- Proton beam deflections are important for treatment planning purposes

Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy B. M. Obom⁶ Blassare Court Court (ICCC), Wollstoping, NSW 2500, Aurmilia and Court for Medical Radiation

Oborn et al., Medical Physics, Vol. 42, No. 5,

Part 2: MRI-proton modelling

Topic 2: Scanning Magnet Modeling (Full modelling loop)

Inline Orientation Scanning Pattern

230 MeV pencil beam scanning, scanning magnets in clinical position: (gif)

Perpendicular Orientation Scanning Pattern

230 MeV pencil beam scanning, scanning magnets in clinical position: (gif)

Part 2: MRI-proton modelling

Topic 3: Modeling the OncoRay prototype: MRJ2200 + PBS:

Part 2: MRI-proton modelling

COSMOL magnetic field map

- generally good agreement with experiments along the beamline
- small differences around the shoulder: 2%, 5 mm match

Results: PBS deflection - film vs Monte Carlo

- The errors are related to small inaccuracies in the 3D magnetic field map
- Future work will use full benchmarked MRI models or experimental data for 3D field maps

Part 2: MRI-proton modelling

Topic 4: Electron contamination from proton beams (Entry skin dose)

- Sydney MRI with PBS plans (RayStation)
- 30x30x30 cm water phantom
- 5 cm spherical target
- 20x20x5 cm block target
- 70-213 MeV proton pencil beams
- < 5% dose increases only!
- So why no high skin dose??

Electron contamination from proton beams: Entry skin dose

- Extract the electron properties starting from a 1 cm cube above the phantom
- Confirm how electrons travel along the field lines
- Examine their energy spectrum

Electron contamination from proton beams: Entry skin dose

- But what about the electron energies?
- Much lower than those produced by x-ray beams!
- Conclusion: the secondary electrons simply don't have enough energy to travel long distances in air; no cascade effect towards the surface

Part 2: MRI-proton therapy modelling - summary

- Geant4 was the first code to be used to investigate the basics of dose changes due to magnetic fields in 2008
 - I have used it extensively at the CMRP over the last 8 years for studying various elements of MRI-Linac radiotherapy
 - It is helping guide the prototype development at OncoRay, Dresden
- Future work includes modelling of the next generation 0.5 T MRI system at Dresden

Conclusions

- Geant4 has been used for >15 years to model MRI-guided radiotherapy systems and dosimetry changes
 - Skin dose changes accurately predicted in x-ray therapy
 - Methods to lower skin dose increases modelled, under development at Sydney
 - Important beam transport modelling for MRPT
 - Ongoing modelling with Dresden MRPT development
- Acknowledgements:
 - Geant4 community (and Conference Organizers)
 - Australian MRI-Linac Program and University of Wollongong
 - OncoRay, Dresden
 - IBA, Belgium

Conclusions

- ullet Geant4 has been used for >15 years to model MRI-guided radiotherapy systems and dosimetry changes
 - Skin dose changes accurately predicted in x-ray therapy
 - Methods to lower skin dose increases modelled, under development at Sydney
 - Important beam transport modelling for MRPT
 - Ongoing modelling with Dresden MRPT development
- Acknowledgements:
 - Geant4 community (and Conference Organizers)
 - Australian MRI-Linac Program and University of Wollongong
 - OncoRay, Dresden
 - IBA, Belgium

Thanks for your attention!