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Deep Learning and Monte Carlo (med phys)

Several investigations in the previous years

TABLE 1 | Al-based applications 1
properties such as energy, positid

Application

Dose computation
Dose denoising
scan-time reduction
CBCT scatter modelling
PET attenuation/scatter correction
Detector response modelling
Source + phase space modelling
Event selection

Interaction position in scintillators

Fig. 3. A dose distribution on a sample lung test case. Left is the noisy dose distribution (MC simulation with 1 x 10° protons) and right is the reference dose
distribution computed with 1 x 10° protons.
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Deep Learning and Monte Carlo (med phys)

Several investigations in the previous years

TABLE 1 | Al-based applications related to Monte C
properties such as energy, position, direction, weig

Application

Dose computation

Dose denoising

SPECT scan-time reduction
CBCT scatter modelling

PET attenuation/scatter correction
Detector response modelling
Source + phase space modelling
Event selection

Interaction position in scintillators
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Diagnostic CT

—Primary —DCAEnoniso
Uncorrected —Heuristic

Primary CBCT

Profile (pixels)

Uncorrected CBCT

DCAEnoniso corrected CBCT

Heuristic corrected CBCT

0 a vector of particle
bN.

Main ML types

CNN, U-net
CNN, U-net
CNN, U-net
CNN, U-net
CNN, U-net
GAN, MLP
GAN

MLP, CNN
MLP, CNN

[van den Heyden2020]
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Deep Learning and Monte Carlo (med phys)

Several investigations in the previous years

TABLE 1 | Al-based applications related to Monte Carlo simulations and their corresponding input data type. The word “particles” as input type refers to a vector of particle
properties such as energy, position, direction, weight, etc. CNN stands for convolutional neural networks and MLP stands for multi-layer perceptron.

Application Input type Refs (among others) Main ML types
Dose computation image [49, 63, 79, 85, 90, 104, 116, 117, 147] CNN, U-net
Dose denoaising image [43, 59, 71, 101, 103, 111, 131, 153]1 CNN, U-net
SPECT scan-time reduction image [82, 119, 121] CNN, U-net
CBCT scatter modelling image [27, 58, 60, 75, 79, 84, 87, 88, 140, 145, 152, 155] CNN, U-net
. nnrrﬁ\’rinn imagﬁ [6, N7 - .
Detector response modelling particles [126, ‘ [SarrUt et al- Frontiers 2022]
Source + phase space modellin articles [108, 11 & fron‘hers
e 8, 12, 40, 46,93, 08
Interaction position in scintillators various [23, 33, 37, 99, 109, —— .
Artificial Intelligence for Monte Carlo
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Example 1

Modeling a phase-space with a GAN



Radiation Therapy Linac head

simulation
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Phase Space (PHSP)
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GAN: Generative Adversarial Network

. J Jp (0p,8¢) = E;[D(G(2))] - Eg [D(z)]
* Training dataset = € R Jo (0p.66) = — E.[D(G(2))

* Dimensiond=7 (FE,X,Y,Z dX,dY,dZ)—
e Samples of unknown Preal

Wasserstein GAN [Arjovsky 2017]

* Generator G(z;0()

* Discriminator D(x;0p)

[Goodfellow 2014]
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Example 2

Modeling “forward model” and “detector response” with GAN and NN



SPECT simulation

e Partl: from emission to patient exiting gamma
e Part2: track gamma inside the detector

SPECT head detector

Tracked gammas Collimator, crystal, digitizer

-
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-
-
-
-
-
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-
-
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Reference analog Monte Carlo simulation




Training dataset

Train a GAN to produce exiting gamma from a given source

* Stepl: run low stats MC, consider exiting gammas (in a phsp)
* Step2: train a GAN, use it as a source

» Step3: track to detector Tracked gammas

Conditional GAN

e Condition = activity distribution

Reference analog Monte Carlo simulation

 Specific to a CT image

* Generic to any activity distribution

Proposed neural network based simulation
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Detector response

[Song2005]
[Descourt2010]

. . Rydeen2018
With Angular Response Function (ARF) [[syar?j:zc)lg]]

Modeled as a neural network
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GAN as a “forward” model

The GAN produce exiting gamma from any activity source

SPECT head detector

Tracked'gammas Collimator, crystal, digitizer
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Reference analog Monte Carlo simulation

Proposed neural network based simulation
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Results

Reference Monte Carlo

|+ Feasible
* Not perfect, still under investigation

* Around x100 computation time (?) GAN-based Monts Carlo
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Technical: implementation

How to integrate DL within Geant4



D.L. / Geant4 integration

Goal: neural network integration in Geant4 simulation

e Geant4 is C++, plain CPU, multithreads

* Most of Al toolkit’s front-ends are Python, GPU
 Training: external to Geant4 (for the moment)
* Inference: within Geant4

O PyTorch <2,
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Geant4 integration (#1)

PyTorch C++ lib (libTorch) O Py TO rC h
* Use the compiled libTorch library

e Convert the trained nn into a ”.pt” file (pretrained weights)
* Load net: nn = torch:jit::load(path);

* Runnet: output = nn.forward(input).toTensor();

e Convert input and output tensors

* GPU not straightforward

Av: integrated
Inc: long development/maintenance time, complex API
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Geant4 integration (#2)

In the new GATE system C++ (Geant4)
* Simulation described in Python (no more macros)
 (Part of) Geant4 is exposed with pybind11

 Callbacks from C++ to Python during simulation

e Conventional PyTorch code
* Copy/convert data from C++ to Python

 Accumulate data before callback
e.g. only every 10° ”hits”

Av: easier development, GPU
Inc: (callback is slow but infrequent), some data copy

Python (PyTorch)
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Abstract

A method to speed up Monte-Carlo simulations of single photon emission computed tomography
(SPECT) imaging is proposed. It uses an artificial neural network (ANN) to learn the angular
response function (ARF) of a collimator—detector system. The ANN is trained once from a complete
simulation including the complete detector head with collimator, crystal, and digitization process. In
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Abstract

A method is proposed to model by a generative adversarial network the distribution of particles exiting
apatient during Monte Carlo simulation of emission tomography imaging devices. The resulting
compact neural network is then able to generate particles exiting the patient, going towards the
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Abstract

A method is proposed and evaluated to model large and inconvenient phase space files used in Monte
Carlo simulations by a compact aenerative advercarial natwarl (GANN T° - o

on a phase space dataset to crea
multidimensional data distribu
with about 0.5 million weights,
generated with G to replace the

This concept is applied to be
seed models. Simulations using
generated by the GAN on the o1

‘ [Sérrut et al. Frontiers 2022]
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Modeling families of particle phase-space distributions
with conditional GAN for Monte Carlo SPECT

simulations
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Abstract.

We propose a method to model families of phase-space distributions of particles
emitted within a phantom during Monte Carlo simulation of SPECT imaging devices
with a conditional Generative Adversarial Network (condGAN). The condGAN is
trained on a phase-space dataset containing, in addition to the energy, time, position
and direction of emitted particles, a vector of conditions composed of four dimensions:
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* Perspec..._.
* Conditional GAN: to learn a family of phase-spaces [Saporta2022 PMB]
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