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Deep Learning and Monte Carlo (med phys)

Several inves+ga+ons in the previous years

are referred to as the “network architecture”. The weights’ values
of the connections are parameters that will be determined during
the training phase.

x(i+1) ! f W(i)x(i) + b(i)( ) (1)

Indeed, training the model means optimizing a value for every
weight in order to adapt the network to handle a task. This
learning process uses a training dataset as input which, for
supervised learning, groups pairs of input-output samples.
Optimizing the network is typically performed by stochastic
gradient descent where weights are updated using
backpropagation (in a feedforward network) that computes the
gradient of a loss function with respect to the weights of the
network. The loss function is chosen depending on the problem at
hand, for example to quantify how well the current model
prediction matches the training dataset or, indirectly, to
measure a distance between current and expected distribution.

Convolutional neural networks [73, 77, 156] is a famous
approach to deal with high dimension input data such as
images. They are regularized versions of (fully connected)
networks based on convolution kernels that slide along input
features and provide activation when some specific type of feature
is detected at some spatial position in the input image. Hence,
shared weights and local connections allow reducing the number
of parameters and can thereby simplify the training process,
improve generalisation, and reduce overfitting. A CNN
architecture is composed of several building blocks
(convolution layer, pooling layer, fuller connected layer,
activation function, loss function, etc) that must be selected
and put together into a network for each task.

Generative Adversarial Networks (GANs) are special deep neural
network architectures recently reported [48] that, once trained, can be
used to generate data with similar statistics as the training set. A GAN
consists of two models that are simultaneously trained: a generative
model G that aims to generate a targeted data distribution, and a
discriminative model D that estimates the probability that a sample
came from the training data rather than from the generative model.
The discriminator D is trained tomaximize the probability of correctly
identifying samples from the training data as real and those generated
by G as fake. The generator G is trained to produce data samples

distributed similarly to the data distribution. Once trained, the
resulting G model is able produce set of samples that are supposed
to belong to the underlying probability distribution of the targeted data
represented by the training dataset. A review can, for example, be
found in [31]. This type of architecture is frequently used in multiple
applications, in particular in the synthesis of photorealistic images or,
for example in themedical physics field, to generate synthetic CT from
MR images [80]. In the field of Monte Carlo particle tracking
simulations in medical physics, several works have been proposed
and will be discussed in the next sections.

2 LITERATURE REVIEW

Within the High Energy Physics (HEP) community, a lot of effort
has already been made to improve and accelerate Monte Carlo
simulation with the help of Machine Learning (including Deep
learning) for various applications, in particular around the
Geant4 code [44]. Among various examples: simulation of
particle showers [108], modelling the response of detectors
[144], pairs of jet simulation at LHC [39], nuclear interaction
modelling [30], condensed matter physics [25, 133], etc.
Interested readers may, for example, refer to several reviews
[2, 3, 22, 51, 114] or to https://iml-wg.github.io/HEPML-
LivingReview.

To our knowledge, no review has been proposed for the
medical physics field. In the following sections, we thus review
works which combine machine learning with Monte Carlo
simulations in the medical physics field. Of course, particle
transport simulation via Monte Carlo in HEP and medical
physics share many similarities. Exchange among researchers
working in these different fields would be desirable in order to
share new knowledge and discoveries. Some of the works
reviewed in the following deal with input data that are not an
image, but are related to sets of particle properties. Table 1
summarizes the type of input that is considered for each
application. The motivation behind many of the presented
works is to speed up the computation, e.g. dose calculations or
image reconstructions, to the order of minutes rather than hours
or days. Other motivation is to improve detector quality by better
event selection or reconstruction.

TABLE 1 | AI-based applications related to Monte Carlo simulations and their corresponding input data type. The word “particles” as input type refers to a vector of particle
properties such as energy, position, direction, weight, etc. CNN stands for convolutional neural networks and MLP stands for multi-layer perceptron.

Application Input type Refs (among others) Main ML types

Dose computation image [49, 63, 79, 85, 90, 104, 116, 117, 147] CNN, U-net
Dose denoising image [43, 59, 71, 101, 103, 111, 131, 153]1 CNN, U-net
SPECT scan-time reduction image [82, 119, 121] CNN, U-net
CBCT scatter modelling image [27, 58, 60, 75, 79, 84, 87, 88, 140, 145, 152, 155] CNN, U-net
PET attenuation/scatter correction image [6, 97] CNN, U-net
Detector response modelling particles [126, 144] GAN, MLP
Source + phase space modelling particles [108, 125, 127] GAN
Event selection particles [8, 12, 40, 46, 93, 98, 100, 102, 107, 157]2 MLP, CNN
Interaction position in scintillators various [23, 33, 37, 99, 109, 110, 122, 150, 154] MLP, CNN

1http://hdl.handle.net/11603/19255
2http://hdl.handle.net/2078.1/thesis:14550
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Deep Learning and Monte Carlo (med phys)

Several investigations in the previous years

are referred to as the “network architecture”. The weights’ values
of the connections are parameters that will be determined during
the training phase.

x(i+1) ! f W(i)x(i) + b(i)( ) (1)

Indeed, training the model means optimizing a value for every
weight in order to adapt the network to handle a task. This
learning process uses a training dataset as input which, for
supervised learning, groups pairs of input-output samples.
Optimizing the network is typically performed by stochastic
gradient descent where weights are updated using
backpropagation (in a feedforward network) that computes the
gradient of a loss function with respect to the weights of the
network. The loss function is chosen depending on the problem at
hand, for example to quantify how well the current model
prediction matches the training dataset or, indirectly, to
measure a distance between current and expected distribution.

Convolutional neural networks [73, 77, 156] is a famous
approach to deal with high dimension input data such as
images. They are regularized versions of (fully connected)
networks based on convolution kernels that slide along input
features and provide activation when some specific type of feature
is detected at some spatial position in the input image. Hence,
shared weights and local connections allow reducing the number
of parameters and can thereby simplify the training process,
improve generalisation, and reduce overfitting. A CNN
architecture is composed of several building blocks
(convolution layer, pooling layer, fuller connected layer,
activation function, loss function, etc) that must be selected
and put together into a network for each task.

Generative Adversarial Networks (GANs) are special deep neural
network architectures recently reported [48] that, once trained, can be
used to generate data with similar statistics as the training set. A GAN
consists of two models that are simultaneously trained: a generative
model G that aims to generate a targeted data distribution, and a
discriminative model D that estimates the probability that a sample
came from the training data rather than from the generative model.
The discriminator D is trained tomaximize the probability of correctly
identifying samples from the training data as real and those generated
by G as fake. The generator G is trained to produce data samples

distributed similarly to the data distribution. Once trained, the
resulting G model is able produce set of samples that are supposed
to belong to the underlying probability distribution of the targeted data
represented by the training dataset. A review can, for example, be
found in [31]. This type of architecture is frequently used in multiple
applications, in particular in the synthesis of photorealistic images or,
for example in themedical physics field, to generate synthetic CT from
MR images [80]. In the field of Monte Carlo particle tracking
simulations in medical physics, several works have been proposed
and will be discussed in the next sections.

2 LITERATURE REVIEW

Within the High Energy Physics (HEP) community, a lot of effort
has already been made to improve and accelerate Monte Carlo
simulation with the help of Machine Learning (including Deep
learning) for various applications, in particular around the
Geant4 code [44]. Among various examples: simulation of
particle showers [108], modelling the response of detectors
[144], pairs of jet simulation at LHC [39], nuclear interaction
modelling [30], condensed matter physics [25, 133], etc.
Interested readers may, for example, refer to several reviews
[2, 3, 22, 51, 114] or to https://iml-wg.github.io/HEPML-
LivingReview.

To our knowledge, no review has been proposed for the
medical physics field. In the following sections, we thus review
works which combine machine learning with Monte Carlo
simulations in the medical physics field. Of course, particle
transport simulation via Monte Carlo in HEP and medical
physics share many similarities. Exchange among researchers
working in these different fields would be desirable in order to
share new knowledge and discoveries. Some of the works
reviewed in the following deal with input data that are not an
image, but are related to sets of particle properties. Table 1
summarizes the type of input that is considered for each
application. The motivation behind many of the presented
works is to speed up the computation, e.g. dose calculations or
image reconstructions, to the order of minutes rather than hours
or days. Other motivation is to improve detector quality by better
event selection or reconstruction.

TABLE 1 | AI-based applications related to Monte Carlo simulations and their corresponding input data type. The word “particles” as input type refers to a vector of particle
properties such as energy, position, direction, weight, etc. CNN stands for convolutional neural networks and MLP stands for multi-layer perceptron.

Application Input type Refs (among others) Main ML types

Dose computation image [49, 63, 79, 85, 90, 104, 116, 117, 147] CNN, U-net
Dose denoising image [43, 59, 71, 101, 103, 111, 131, 153]1 CNN, U-net
SPECT scan-time reduction image [82, 119, 121] CNN, U-net
CBCT scatter modelling image [27, 58, 60, 75, 79, 84, 87, 88, 140, 145, 152, 155] CNN, U-net
PET attenuation/scatter correction image [6, 97] CNN, U-net
Detector response modelling particles [126, 144] GAN, MLP
Source + phase space modelling particles [108, 125, 127] GAN
Event selection particles [8, 12, 40, 46, 93, 98, 100, 102, 107, 157]2 MLP, CNN
Interaction position in scintillators various [23, 33, 37, 99, 109, 110, 122, 150, 154] MLP, CNN

1http://hdl.handle.net/11603/19255
2http://hdl.handle.net/2078.1/thesis:14550
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Several investigations in the previous years

are referred to as the “network architecture”. The weights’ values
of the connections are parameters that will be determined during
the training phase.

x(i+1) ! f W(i)x(i) + b(i)( ) (1)

Indeed, training the model means optimizing a value for every
weight in order to adapt the network to handle a task. This
learning process uses a training dataset as input which, for
supervised learning, groups pairs of input-output samples.
Optimizing the network is typically performed by stochastic
gradient descent where weights are updated using
backpropagation (in a feedforward network) that computes the
gradient of a loss function with respect to the weights of the
network. The loss function is chosen depending on the problem at
hand, for example to quantify how well the current model
prediction matches the training dataset or, indirectly, to
measure a distance between current and expected distribution.

Convolutional neural networks [73, 77, 156] is a famous
approach to deal with high dimension input data such as
images. They are regularized versions of (fully connected)
networks based on convolution kernels that slide along input
features and provide activation when some specific type of feature
is detected at some spatial position in the input image. Hence,
shared weights and local connections allow reducing the number
of parameters and can thereby simplify the training process,
improve generalisation, and reduce overfitting. A CNN
architecture is composed of several building blocks
(convolution layer, pooling layer, fuller connected layer,
activation function, loss function, etc) that must be selected
and put together into a network for each task.

Generative Adversarial Networks (GANs) are special deep neural
network architectures recently reported [48] that, once trained, can be
used to generate data with similar statistics as the training set. A GAN
consists of two models that are simultaneously trained: a generative
model G that aims to generate a targeted data distribution, and a
discriminative model D that estimates the probability that a sample
came from the training data rather than from the generative model.
The discriminator D is trained tomaximize the probability of correctly
identifying samples from the training data as real and those generated
by G as fake. The generator G is trained to produce data samples

distributed similarly to the data distribution. Once trained, the
resulting G model is able produce set of samples that are supposed
to belong to the underlying probability distribution of the targeted data
represented by the training dataset. A review can, for example, be
found in [31]. This type of architecture is frequently used in multiple
applications, in particular in the synthesis of photorealistic images or,
for example in themedical physics field, to generate synthetic CT from
MR images [80]. In the field of Monte Carlo particle tracking
simulations in medical physics, several works have been proposed
and will be discussed in the next sections.

2 LITERATURE REVIEW

Within the High Energy Physics (HEP) community, a lot of effort
has already been made to improve and accelerate Monte Carlo
simulation with the help of Machine Learning (including Deep
learning) for various applications, in particular around the
Geant4 code [44]. Among various examples: simulation of
particle showers [108], modelling the response of detectors
[144], pairs of jet simulation at LHC [39], nuclear interaction
modelling [30], condensed matter physics [25, 133], etc.
Interested readers may, for example, refer to several reviews
[2, 3, 22, 51, 114] or to https://iml-wg.github.io/HEPML-
LivingReview.

To our knowledge, no review has been proposed for the
medical physics field. In the following sections, we thus review
works which combine machine learning with Monte Carlo
simulations in the medical physics field. Of course, particle
transport simulation via Monte Carlo in HEP and medical
physics share many similarities. Exchange among researchers
working in these different fields would be desirable in order to
share new knowledge and discoveries. Some of the works
reviewed in the following deal with input data that are not an
image, but are related to sets of particle properties. Table 1
summarizes the type of input that is considered for each
application. The motivation behind many of the presented
works is to speed up the computation, e.g. dose calculations or
image reconstructions, to the order of minutes rather than hours
or days. Other motivation is to improve detector quality by better
event selection or reconstruction.

TABLE 1 | AI-based applications related to Monte Carlo simulations and their corresponding input data type. The word “particles” as input type refers to a vector of particle
properties such as energy, position, direction, weight, etc. CNN stands for convolutional neural networks and MLP stands for multi-layer perceptron.

Application Input type Refs (among others) Main ML types

Dose computation image [49, 63, 79, 85, 90, 104, 116, 117, 147] CNN, U-net
Dose denoising image [43, 59, 71, 101, 103, 111, 131, 153]1 CNN, U-net
SPECT scan-time reduction image [82, 119, 121] CNN, U-net
CBCT scatter modelling image [27, 58, 60, 75, 79, 84, 87, 88, 140, 145, 152, 155] CNN, U-net
PET attenuation/scatter correction image [6, 97] CNN, U-net
Detector response modelling particles [126, 144] GAN, MLP
Source + phase space modelling particles [108, 125, 127] GAN
Event selection particles [8, 12, 40, 46, 93, 98, 100, 102, 107, 157]2 MLP, CNN
Interaction position in scintillators various [23, 33, 37, 99, 109, 110, 122, 150, 154] MLP, CNN

1http://hdl.handle.net/11603/19255
2http://hdl.handle.net/2078.1/thesis:14550

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7381123

Sarrut et al. AI for Monte Carlo Simulation

[Sarrut et al. Fron.ers 2022]



Example 1
Modeling a phase-space with a GAN 
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Radiation Therapy Linac head simulation

Goal: determine beam characteristics 
(energy, position, direction distributions)

e- beam

Few photons exiting
VRT (brem splitting)

Phase space plane



7

Phase Space (PHSP)

Store beam properties as 
Phase Space

• A PHSP is a list of particles 
(around 108, 109)

• Properties: 
E, x, y, z, dx, dy, dz, w, t

Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4 911

(a)
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Figure 5. Analysis of the direction parameter φ using a PhS of 1.1 × 107 photons. Top: φ
distribution (a). Bottom: double dependence of φ with photon radial position (b) and energy (c).

PhS and the SBS PhS. A further improvement in the toolkit would be to fill the histograms
directly during the simulation, thus avoiding to store bulky PhSs.

Depth doses and dose profiles were computed with the MSM and compared to the reference
measurements, using both the reference and the SBS PhSs. These comparisons allowed for
evaluating the bias introduced by the SBS tool when using the MSM. Additional calculations
were performed using the EGEE grid for full simulations, from the electron source to the water
phantom, using the SBS tool. These simulations allowed for evaluating the bias introduced by
the MSM, when using the SBS tool. Eventually, some simulations were performed by reading
the reference PhS and were compared to MSM calculations. It is noteworthy that it is possible
to perform all kind of GATE simulations on the grid, for radiotherapy as well as for PET and
SPECT applications. See Camarasu-Pop et al (2010) for implementation details of GATE on
the EGEE grid.

2.8. SBS tool

The mandatory tuning stage of the two electron beam parameters (mean energy and spot
size) required many simulations. A different PhS file corresponding to each configuration
was used by the MSM in order to compare simulations with measurements in water. A
variance reduction technique SBS (Rogers et al 2002), is now implemented in GATE (Jan
et al 2010) in order to increase the production of photons by the bremsstrahlung process.
The improvement of the simulation efficiency for radiotherapy applications is a complex task,
which was extensively studied for the EGSnrc/BEAMnrc code: directional bremsstrahlung
splitting (DBS) (Kawrakow et al 2004, Mainegra-Hing and Kawrakow, 2006), bremsstrahlung

Example of dependance of direction φ and energy
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GAN: Generative Adversarial Network
• Training dataset

• Dimension d=7 
• Samples of unknown

• Generator

• Discriminator
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GAN for MC simulations 3

The goal is to learn a generative function G that models a distribution p✓. ✓74

are the parameters of the distribution model approximating a target distribution preal75

only known by samples from a training dataset [6]. The neural network architecture is76

composed of two multilayer perceptrons, D and G, competing one against the other,77

hence the term adversarial. The generator G(z;✓G) is trained to produce samples78

distributed similarly as the data distribution of x. It takes z as input, sampled from a79

simple normal prior distribution, N (0, 1), and produces a sample x as if it were drawn80

from preal. The parameters ✓G are the weights of the network G. The discriminator81

D(x;✓D) is trained to distinguish between samples from the data distribution and those82

generated by G. It takes x as input and outputs a single scalar that represents the83

probability of x coming from the real data rather than from the generator. D is trained84

to maximize the probability of correctly identifying samples from the training data as85

real and those generated by G as fake. The parameters ✓D are the weights of the network86

D.87

The GAN training process is a zero-sum non-cooperative game which converges88

when the discriminator and the generator reach Nash equilibrium [13]. A Nash89

equilibrium is reached when one player (neural network) will not change its action90

(weights) regardless of what the opponent (the other network) may do. In the91

conventional GAN formulation [6], the considered cost function was the Binary Cross92

Entropy (BCE) both forG andD. BCE(p, q) between two distributions p and q is related93

to the Kullback-Leibler divergence which measures the performance of a classification94

model whose output is a probability value between 0 and 1. It has been shown that the95

loss function of GAN quantifies the similarity between the data distribution generated96

by G and the real sample distribution, by the Jensen-Shannon divergence (JSD) when97

the discriminator is optimal [6]. JSD is a symmetrized and smoothed version of the98

Kullback-Leibler divergence.99

However, in practice GAN was found to be di�cult to train and subject to mode100

collapse [8]. Here, we instead used the Wasserstein GAN variation proposed by Arjovsky101

et al. [8], that use Earth Mover’s distance as an alternative GAN loss function. The102

Wasserstein (or Earth-Mover) distance between two distributions p and q is the cost of103

the optimal transport to deform p into q. It has been shown that it helps to stabilize104

the learning process, being less subject to vanishing gradient than conventional GAN.105

In practice, there are few changes from the original GAN. First, the losses become as in106

equations 1 and 2.107

JD (✓D,✓G) = Ez [D(G(z))]� Ex [D(x)] (1)

JG (✓D,✓G) = � Ez[D(G(z))] (2)

Then, after every gradient update, the weights ✓D are clamped to a small fixed108

range (e.g. [�0.01, 0.01]) in order to enforce weights to be in a compact space. Finally,109

the authors [8] also recommend to use the RMSProp optimizer [14] instead of the110

conventional Adam optimizer [15] which uses momentum processes that may cause111

Wasserstein GAN [Arjovsky 2017]

[Goodfellow 2014]
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Results

• Dose distribuKon in water from PHSP
108 primary photons

• Voxel by voxel dose comparison

(LINAC head)

PHSP plane

Waterbox

Difference/uncertainty

Beam

• Sufficient for dose but not perfect
• Smooth-out 511 keV peak 

• 2GB replaced by 10 MB



Example 2
Modeling “forward model” and “detector response” with GAN and NN



11

SPECT simulaCon
• Part1: from emission to pa+ent exi+ng gamma
• Part2: track gamma inside the detector
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Training dataset
Train a GAN to produce exiting gamma from a given source
• Step1: run low stats MC, consider exiting gammas (in a phsp)
• Step2: train a GAN, use it as a source
• Step3: track to detector

Conditional GAN
• Condition = activity distribution
• Specific to a CT image
• Generic to any activity distribution

xc
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Detector response 
With Angular Response Func+on (ARF)
Modeled as a neural network

Learning SPECT ARF 5

2.3. Generating an image with ARF-nn151

The ARF-nn method was decomposed into a two-step process. First, as with ARF-152

histo, the simulation is run with the SPECT head replaced by an empty plane of 1 nm153

thickness, henceforth called the “ARF plane”, located just in front of the collimator.154

The position, direction, and energy of the photons that reach the ARF plane are stored155

in a dataset. In a second step, performed after the simulation, the image is computed as156

follows using this dataset. For every photon, the coordinates (u, v) in the image plane,157

sampled with 4⇥4 mm pixel size, is determined from the position in the ARF plane as158

proposed in [6], i.e. using the point where the incident photon direction vector intersects159

the image plane located half-way of the crystal length. Figure 1 illustrates the process160

with the ARF and image planes. For the values (E, ✓, �) of each incident photon, the161

NN is used to get the probabilities h(E, ✓,�) = yi. I(u, v, i) is then incremented by yi,162

with i the index of the energy window.163

photons
Collimator

Detected 
photons

Emitted

photons

ARF plane

ARF-histo

Emitted

ARF-nn
or

One count in 
one energy 

window

Detection 
probability

in all energy
windows

Image plane
(crystal midpoint)

Crystal

a) Conventional Monte-Carlo
b) ARF method

Figure 1. Top: Conventional SPECT simulation principle with photons tracked in
collimator and crystal. Bottom: SPECT simulation with ARF method (both ARF-
histo or ARF-nn). Photons are stopped at the ARF plane and the ARF model provides
probabilities to detect the photons in each energy window (distance between ARF plane
and image plane not at scale).

The time gain of the method compared to Monte-Carlo is that 1) the simulation164

required to generate the image is expected to be faster than a full simulation including165

tracking in the detector head, and 2) the ARF model (histograms or NN) gives the166

probability in all energy windows thus contributing to variance reduction.167

[Song2005] 
[Descourt2010] 
[Rydeen2018]
[Sarrut2018]

Learning SPECT ARF 5

2.3. Generating an image with ARF-nn151

The ARF-nn method was decomposed into a two-step process. First, as with ARF-152

histo, the simulation is run with the SPECT head replaced by an empty plane of 1 nm153

thickness, henceforth called the “ARF plane”, located just in front of the collimator.154

The position, direction, and energy of the photons that reach the ARF plane are stored155

in a dataset. In a second step, performed after the simulation, the image is computed as156

follows using this dataset. For every photon, the coordinates (u, v) in the image plane,157

sampled with 4⇥4 mm pixel size, is determined from the position in the ARF plane as158

proposed in [6], i.e. using the point where the incident photon direction vector intersects159

the image plane located half-way of the crystal length. Figure 1 illustrates the process160

with the ARF and image planes. For the values (E, ✓, �) of each incident photon, the161

NN is used to get the probabilities h(E, ✓,�) = yi. I(u, v, i) is then incremented by yi,162

with i the index of the energy window.163
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a) Conventional Monte-Carlo
b) ARF method

Figure 1. Top: Conventional SPECT simulation principle with photons tracked in
collimator and crystal. Bottom: SPECT simulation with ARF method (both ARF-
histo or ARF-nn). Photons are stopped at the ARF plane and the ARF model provides
probabilities to detect the photons in each energy window (distance between ARF plane
and image plane not at scale).

The time gain of the method compared to Monte-Carlo is that 1) the simulation164

required to generate the image is expected to be faster than a full simulation including165

tracking in the detector head, and 2) the ARF model (histograms or NN) gives the166

probability in all energy windows thus contributing to variance reduction.167

ARF
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GAN as a “forward” model
The GAN produce exiting gamma from any activity source
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Results 

Test2: 3D reconstruction

Test1: 3D reconstruc_on

• Feasible
• Not perfect, sCll under invesCgaCon
• Around x100 computaCon Cme (?)



Technical: implementation
How to integrate DL within Geant4
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D.L. / Geant4 integration
Goal: neural network integration in Geant4 simulation

• Geant4 is C++, plain CPU, multithreads
• Most of AI toolkit’s front-ends are Python, GPU
• Training: external to Geant4 (for the moment)
• Inference: within Geant4
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Geant4 integration (#1)
PyTorch C++ lib (libTorch)
• Use the compiled libTorch library
• Convert the trained nn into a ”.pt” file (pretrained weights)
• Load net : nn = torch::jit::load(path);
• Run net : output = nn.forward(input).toTensor();
• Convert input and output tensors
• GPU not straighDorward

Av: integrated
Inc: long development/maintenance Hme, complex API



19

Geant4 integraCon (#2)
In the new GATE system

• Simulation described in Python (no more macros)
• (Part of) Geant4 is exposed with pybind11

• Callbacks from C++ to Python during simulation
• Conventional PyTorch code
• Copy/convert data from C++ to Python

• Accumulate data before callback
e.g. only every 105 ”hits”

Av: easier development, GPU
Inc: (callback is slow but infrequent), some data copy

C++ (Geant4)

Python (PyTorch)
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1. Introduction

Monte Carlo simulations are widely used to characterize sources of particles, such as those of linac photon/
electron beams, x-ray tubes, proton beam nozzles, brachytherapy radionuclide seeds, particles emerging from 
a voxelised patient geometry (to simulate a nuclear imaging process), etc. The computation time to perform 
such simulations is generally high and phase space files have been acknowledged as a necessary means to avoid 
repeated and redundant execution of part of the simulation. A typical example is the dose calculation in a patient 
CT image where the simulation is split into two parts (Andreo 2018). A first, detailed, Monte Carlo simulation 
is performed to transport particles through the accelerator treatment head elements (primary collimation, 
flattening filter, monitor chambers, mirrors, secondary collimation, etc), up to a virtual plane. The properties 
(energy, position, direction) of all particles reaching the plane are stored in the phase space file and depend on the 
detailed properties of the treatment head components, such as its shape and materials. A second simulation tracks 
particles from the phase space plane through the multi-leaf collimator and the patient CT image to estimate the 
absorbed dose distribution.

However, phase space files are typically up to several tens of gigabytes large and inconvenient to use effi-
ciently. Statistical limitations may also arise when more particles are required than stored in the phase space file. 
Several virtual source models for linac beam modelling have been proposed in the literature. For example in Fix 
et al (2001), Grevillot et al (2011), the authors describe the statistical properties of the phase space distribution 
by analytical functions, by evaluating the dependence of the parameters and by adapted sampling procedures. 
Chabert et al (2016) used 4D correlated histograms with different adaptive binning schemes to represent an 
Elekta Synergy 6 MV photon beam. Recently, Brualla et al (2019) proposed a method to extract light-weight spec-
tra from large phase space files. This method may be sufficient for some applications, but may neglect correla-
tions between energy, position and direction and require adaptive binning. Overall, the proposed methods were  
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Abstract
A method is proposed and evaluated to model large and inconvenient phase space files used in Monte 
Carlo simulations by a compact generative adversarial network (GAN). The GAN is trained based 
on a phase space dataset to create a neural network, called Generator (G), allowing G to mimic the 
multidimensional data distribution of the phase space. At the end of the training process, G is stored 
with about 0.5 million weights, around 10 MB, instead of a few GB of the initial file. Particles are then 
generated with G to replace the phase space dataset.

This concept is applied to beam models from linear accelerators (linacs) and from brachytherapy 
seed models. Simulations using particles from the reference phase space on one hand and those 
generated by the GAN on the other hand were compared. 3D distributions of deposited energy 
obtained from source distributions generated by the GAN were close to the reference ones, with 
less than 1% of voxel-by-voxel relative difference. Sharp parts such as the brachytherapy emission 
lines in the energy spectra were not perfectly modeled by the GAN. Detailed statistical properties 
and limitations of the GAN-generated particles still require further investigation, but the proposed 
exploratory approach is already promising and paves the way for a wide range of applications.
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Modeling complex particles phase space with GAN for Monte Carlo
SPECT simulations: a proof of concept
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Abstract
Amethod is proposed tomodel by a generative adversarial network the distribution of particles exiting
a patient duringMonte Carlo simulation of emission tomography imaging devices. The resulting
compact neural network is then able to generate particles exiting the patient, going towards the
detectors, avoiding costly particle trackingwithin the patient. As a proof of concept, themethod is
evaluated for single photon emission computed tomography (SPECT) imaging and combinedwith
another neural networkmodeling the detector response function (ARF-nn). A complete rotating
SPECT acquisition can be simulatedwith reduced computation time compared to conventional
MonteCarlo simulation. It also allows the user to perform simulations with several imaging systems
or parameters, which is useful for imaging systemdesign.

1. Introduction

MonteCarlo simulations inmedical physics arewidely used in the design and development of imaging systems
such as positron emission tomography (PET) or single photon emission computed tomography (SPECT), to
monitor nuclear decay, fragmentation in the patient body or for range verification in particle therapy. For
example,manyworks on emerging instrumentation for SPECT imaging systems (Auer et al 2018, Brown 2021,
Massari et al 2020) require extensive and realisticMonte Carlo simulations to investigate and optimize the
detectionmodules and novel geometrical configurations such asmulti-head detectors. In abstract terms, such
simulations create amapping from a given source distribution inside the patient to a signal captured by the
imaging device outside of the patient by transporting particles one-by-one through the objects present in the
simulation. Because some of these objects do typically not overlap, it is possible to decompose the entire
simulation into intermediate steps. For example, in theMonte Carlo simulation of a SPECT imaging system, a
first step transports particles through the patient anatomy described, e.g. by aCT image and a second step
transports those particles exiting the patient to and through the detector system.During thefirst step, photons
emitted from an activity distribution of a given radionuclide are tracked in the inhomogeneousmedium,
potentially undergoing Compton scattering, until they are absorbed or exit themedium. The second step
involves the simulation of the photon interactions within the detection head, through the collimator and the
scintillator.

Decomposing a simulation is useful to avoid redundancy in certain applications. For example, in a given
SPECT scanner, the imaging device is always identical and only the patient anatomy in the first step changes. In
this case, the explicit transport of particles across the imaging device can be replaced by a collimatordetector
(angular) response function (ARF) that combines the accumulated effects of all interactions in the imaging head.
TheARFmay be approximated by an effective numericalmodel, provides variance reduction and accelerates the
simulation (Song et al 2005, Rydén et al 2018, Sarrut et al 2018). On the other hand, e.g. when studying different
imaging systemdesigns, only the second simulation step needs to be repeatedwhile the first step, i.e. the
transport across a given patient, remains unchanged. This requires away to store ormodel the result of thefirst
simulation step and this paper proposes amethod to achieve that.
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1. Introduction

SPECT imaging is widely used to provide 3D images of the spatial distribution of single-photon emission 
radiotracers. A conventional SPECT system is composed of a scintillation detector and photomultiplier tubes 
(PMTs) to record the location and the energy of detected photons. In front of the detector, a lead or tungsten 
honeycomb collimator is used to select photons traveling along a given direction in order to retrieve an estimate 
of their point of origin within the patient. The detected photons are stored according to energy windows. The 
energy windows are determined around the radionuclide photo-peaks and, from the rest of the energy spectrum, 
so as to account for lower-energy photons that have most likely undergone Compton scatter prior to detection 
(and whose origin is therefore uncertain). 

Monte-Carlo simulation of SPECT images is typically done in two main steps: (1) tracking the particles 
inside the medium, e.g. a patient CT image, and (2) tracking the particles in the SPECT detector head. The first 
step generates particles from an activity distribution of a given radionuclide such as 99mTc, 111In  or 177Lu and 
tracks photons from voxel to voxel until they escape from the patient. This process may be accelerated by variance 
reduction techniques (VRT) such as ray-tracing based methods (Ljungberg and Strand 1989, Roshan et al 2016, 
Cajgfinger et al 2018) and/or the use of GPU (Garcia et al 2016, Rydéen et al 2018). Here, we focus on the second 
step, which involves the simulation of the photon interactions in the collimator and in the scintillator (crystal) as 
well as the digitization chain of the readout electronic components. The collimator–detector response function 
(CDRF) combines the accumulated effects of all interactions in the imaging head. It may be approximated with 
ARF methods (Song et al 2005, Rydéen et al 2018).

The ARF method replaces explicit photon tracking in the imaging head with a tabulated model of the CDRF. 
The tabulated model is derived from a simulation with a gamma source covering the energy range of the radi-
onuclide of interest and including the complete detector head with collimator, crystal and digitization process. 
The model takes as input the direction angles and the energy of an incoming photon and determines the prob-
ability for this photon to be detected in each defined energy window. This first step needs to be performed only 
once per type of SPECT head, radionuclide and energy window definition. Once the lookup tables are computed, 
they can be used for every simulation having the same conditions (same collimator/detector, radionuclide energy  
windows), independently of the source distribution and the medium, phantom or patient. The ARF method 
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Abstract
A method to speed up Monte-Carlo simulations of single photon emission computed tomography 
(SPECT) imaging is proposed. It uses an artificial neural network (ANN) to learn the angular 
response function (ARF) of a collimator–detector system. The ANN is trained once from a complete 
simulation including the complete detector head with collimator, crystal, and digitization process. In 
the simulation, particle tracking inside the SPECT head is replaced by a plane. Photons are stopped 
at the plane and the energy and direction are used as input to the ANN, which provides detection 
probabilities in each energy window. Compared to histogram-based ARF, the proposed method 
is less dependent on the statistics of the training data, provides similar simulation efficiency, and 
requires less training data. The implementation is available within the GATE platform.

PAPER
2018

RECEIVED  
11 June 2018

REVISED  

17 September 2018

ACCEPTED FOR PUBLICATION  

21 September 2018

PUBLISHED  
17 October 2018

https://doi.org/10.1088/1361-6560/aae331Phys. Med. Biol. 63 (2018) 205013 (12pp) [Sarrut et al. PMB 2018] [Sarrut et al. PMB 2019]

[Sarrut et al. PMB 2021]

[Sarrut et al. Fron.ers 2022]

[Saporta, PMB 2022 (revision)]



21

Conclusion
AI and MC can be combined in various ways

• Train GAN to produce particles distributions
• Fast particle generation ~106 per second
• Phase-space modeling

• Limitations
• Still unclear what is the required size of the training dataset
• Unclear modeling of “rare” events in the distribution (e.g. 511 keV peak)
• Need to train again if the simulation change

• Perspectives
• Conditional GAN: to learn a family of phase-spaces [Saporta2022 PMB]
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