Artificial Intelligence approaches for Monte Carlo simulation

David Sarrut Ane Etxebeste, Albert Saporta, Nils Krah, Théo Kaprelian, Jean-Michel Létang

CNRS - University of Lyon

CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, France

Deep Learning and Monte Carlo (med phys)

Several investigations in the previous years

3

¹http://hdl.handle.net/11603/19255 ²http://hdl.handle.net/2078.1/thesis:14550

Deep Learning and Monte Carlo (med phys)

Several investigations in the previous years

Deep Learning and Monte Carlo (med phys)

Several investigations in the previous years

TABLE 1 Al-based applications related to Monte Carlo simulations and their corresponding input data type. The word "particles" as input type refers to a vector of particle properties such as energy, position, direction, weight, etc. CNN stands for convolutional neural networks and MLP stands for multi-layer perceptron.

Application	Input type	Refs (among others)	Main ML types	
Dose computation	image	[49, 63, 79, 85, 90, 104, 116, 117, 1	47] CNN, U-net	
Dose denoising	image	[43, 59, 71, 101, 103, 111, 131, 153	B] ¹ CNN, U-net	
SPECT scan-time reduction	image	[82, 119, 121]	CNN, U-net	
CBCT scatter modelling	image	[27, 58, 60, 75, 79, 84, 87, 88, 140, 145, 1	[52, 155] CNN, U-net	
PET attenuation/scatter correction	image	[6, ^{∩¬1}		
Detector response modelling	particles	[126,	[Sarrut et al. Frontiers 2022]	
Source + phase space modelling	particles	[108, 12 [108, 1 2	tiers	
Event selection	particles	[8, 12, 40, 46, 93, 98		
Interaction position in scintillators	various	^{[23, 33, 37, 99, 109,} Artificial I	ntelligence for Monte Carlo	
¹ http://hdl.handle.net/11603/19255		simulatio	n in medical physics	
-http://ndi.nandie.net/2078.1/thesis:14550		David Sarrut ^{1,*} ,	David Sarrut 1,* , Ane Etxebeste 1 , Enrique Muñoz 2 , Nils Krah 1,2 and Jean	
		Michel Létang ¹		
Frontiers in Physics www.frontiersin.org		3 ¹ Univ Lyon, INSA CNRS, Inserm, C	¹ Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France. ² University of Lyon, Université Claude Bernard Lyon 1, CNRS/(NOP2, IR2L Lyon)	
		F-69622. Villeurb	on, oniversite Glaude Bernard Lyon 1, GINRS/IN2P3, IP2I Lyon, banne. France	

Example 1

Modeling a phase-space with a GAN

Radiation Therapy Linac head simulation

Phase Space (PHSP)

Store beam properties as **Phase Space**

- A PHSP is a list of particles (around 10⁸, 10⁹)
- Properties:
 E, x, y, z, dx, dy, dz, w, t

Example of dependance of direction ϕ and energy

GAN: Generative Adversarial Network

[Goodfellow 2014]

- Training dataset $~~m{x} \in \mathbb{R}^{d}$
 - Dimension d=7 (E, X, Y, Z, dX, dY, dZ)-
 - Samples of unknown $\,p_{
 m real}$
- Generator $G(\boldsymbol{z}; \boldsymbol{\theta}_G)$

• Discriminator $D(\boldsymbol{x}; \boldsymbol{\theta}_D)$

 $J_D(\boldsymbol{\theta}_D, \boldsymbol{\theta}_G) = \mathbb{E}_{\boldsymbol{z}} [D(G(\boldsymbol{z}))] - \mathbb{E}_{\boldsymbol{x}} [D(\boldsymbol{x})]$ $J_G(\boldsymbol{\theta}_D, \boldsymbol{\theta}_G) = -\mathbb{E}_{\boldsymbol{z}} [D(G(\boldsymbol{z}))]$

Wasserstein GAN [Arjovsky 2017]

Example 2

Modeling "forward model" and "detector response" with GAN and NN

SPECT simulation

- Part1: from emission to patient exiting gamma
- Part2: track gamma inside the detector

Training dataset

Train a GAN to produce exiting gamma from a given source

- Step1: run low stats MC, consider exiting gammas (in a phsp)
- Step2: train a GAN, use it as a source
- Step3: track to detector

Conditional GAN

- Condition = activity distribution
- Specific to a CT image
- Generic to any activity distribution

Detector response

With Angular Response Function (ARF) Modeled as a neural network

[Song2005] [Descourt2010] [Rydeen2018] [Sarrut2018]

GAN as a "forward" model

The GAN produce exiting gamma from any activity source

Test2: 3D reconstruction

Technical: implementation

How to integrate DL within Geant4

D.L. / Geant4 integration

Goal: neural network integration in Geant4 simulation

- Geant4 is C++, plain CPU, multithreads
- Most of AI toolkit's front-ends are Python, GPU
- Training: external to Geant4 (for the moment)
- Inference: within Geant4

Geant4 integration (#1)

PyTorch C++ lib (libTorch)

- Use the compiled *libTorch* library
- Convert the trained nn into a ".pt" file (pretrained weights)
- Load net : nn = torch::jit::load(path);
- Run net : output = nn.forward(input).toTensor();
- Convert input and output tensors
- GPU not straightforward

Av: integrated

Inc: long development/maintenance time, complex API

OPyTorch

Geant4 integration (#2)

In the new GATE system

- Simulation described in Python (no more macros)
- (Part of) Geant4 is exposed with *pybind11*
- Callbacks from C++ to Python during simulation
 - Conventional PyTorch code
 - Copy/convert data from C++ to Python
- Accumulate data before callback e.g. only every 10⁵ "hits"

Av: easier development, GPU

Inc: (callback is slow but infrequent), some data copy

CATE opengate collaboration.org

O PyTorch

g dataset on (e.g. 511 keV peak)

Concl

AI and M(

- Train
- Fast p
- Phase
- Limitati
 - Still u
 - Uncle
 - Need

Yes We GAN Real Data D C Real Fake

- Perspec....
 - Conditional GAN: to learn a family of phase-spaces [Saporta2022 PMB]

Thanks for your attention !

Lyon, France

CREATIS

