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MOTIVATION
• LET/RBE predictions in patient simulations

• Rib fracture in breast patients locates at distal edge of proton beam. LET model predicts a higher 
dose than the 1.1 scaled dose.
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Wang et al. (2019) 
Int. J. Radiat. Oncol. 
Biol. Phys. 105(1) 
E61.

Fractured Rib

RBE = 1.1 LETd-weighted dose
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MOTIVATION
• Cell experiments show proton irradiated bone cells (osteocytes) have persistent DNA damage, while 

photon irradiated cells repair foci damage. 



• Clinical endpoint of interest is a biological effect not the 
physical dose.

• Understand how radiation interacts with tissue on a 
cellular level.

• New advances are most likely to come from the interface 
of biology, chemistry and physics.

How do we model biological 
effects?

THE NEXT STEP



MECHANISTIC MODELING
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TRACK STRUCTURE MODELING

• Monto Carlo simulation on a 
nanometer scale.

• Physics processes and models 
simulate step-by-step interactions 
of particles in liquid water to the 
eV scale.

• Physico-chemistry and chemistry 
processes for water radiolysis.

• Geant4-DNA, PARTRAC, PITS, 
RITRACKS …

e- e- Fe26-

Bernal, et al. (2015), Phys. Med. 31, 861-874 
Incerti et al. (2010), Med. Phys. 37,4692-4708

Geant4 
(standard)
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TOPAS-nBio

• Provide MC simulation on a nanometer scale. Wrapper for Geant4-DNA toolkit.

• Extension to TOPAS.

• Easy-to-use parameter files, users do not need advanced programming skills.

• Aimed at radiation biology researchers and physicists with interest in biology.

• TOPAS and TOPAS-nBio are freely available.
• TOPAS : www.topasmc.org
• TOPAS-nBio : https://github.com/topas-nbio/
• Documentation : https://topas-nbio.readthedocs.io
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Physics:
proton 
electron

Chemistry:
OH
e-

aq
H3O+

H2O2

Ionization event

• 1 MeV proton in 
water.

• Plasmid DNA 
ring consisting 
of 2000 base-
pairs. 

SIMULATIONS
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GEOMETRIC MODELS

TOPAS-nBio catalogue of 
geometries:

From macroscale 
(cell/organelle) to 
nanoscale (DNA 
molecule).
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NUCLEUS MODELS

Mid-plane light optical section through a 
chicken fibroblast nucleus shows mutually 
exclusive chromosome territories (CTs) with 
homologous chromosomes seen in separate 
locations. 

T. Cremer & C. Cremer, Nature Reviews Genetics 2, 292-301 (2001)
Lanctôt, C., Cheutin, T., Cremer, M., Cavalli, G., & Cremer, T., Nature Reviews. Genetics, 8(2), 
104–115 (2007). 
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Factual globuleRandom walk

NUCLEUS MODELS

Lieberman-Aiden et al. (2009) Science, 326, 289
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3D Hilbert Space filling curve 

NUCLEUS MODELS
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TOPAS-nBio NUCLEUS MODEL

Zhu et al. (2020) Radiat. Res 194, 9.
13
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TOPAS-nBio NUCLEUS MODEL

12 nm

Under 240 nm 240 ~ 480 nm Over 480 nm

24 nm

36 nm

-Voxel size-
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TOPAS-nBio NUCLEUS MODEL



• INDEPENDENT REACTION TIMES (IRT):
• The IRT algorithm doesn’t rely on the 

explicit transport of chemical species.
• Instead, an Independent Time is 

sampled for every pair of reactives.
• This time is stored into a table and 

ordered in and ascending manner.
• The first reaction on the table is then 

executed.
• Its products placed and resampled.

• This process is repeated till the first 
reaction in the table exceeds a certain 
time.

t1

t2

t3

t4
t5

t6

t7

t8

Reaction Time

+ 651 ps

+ 795 ps

+ 263 ps

+ 1264 ps

+ 522 ps

+ 744 ps

2013 ps

Do this 
reaction

t3

t5

t6

t7

t8

t9

TOPAS-nBio CHEMISTRY



Ø Thanks to the flexibility and 
efficiency of the IRT in TOPAS-nBio, 
the following simulations can be/has 
been done:

Ø Accurate G-values calculations.
Ø Dose dependent G-values.

Ø Radiation pulses.
Ø Intertrack effects.

Ø Automatic pH scalation of reaction rates.
Ø Fricke Dosimeter.

Ø DNA damage simulations.
Ø Using plasmids.

Ø Temperature changes to chemistry 
parameters.

Ramos-Mendez, JA et al (2021). PMB, 66, 1–12. https://doi.org/10.1088/1361-6560/ac1f39

TOPAS-nBio pure water
TOPAS-nBio scavengers

TOPAS-nBio CHEMISTRY CAPABILITIES

https://doi.org/10.1088/1361-6560/ac1f39
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(In liquid water)
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Measured data is from Milligan et al (1993), Klimczak et al (1993) and Tomita et al (1995)

TOPAS-nBio
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TOPAS-nBio

TOPAS-nBio

Ø Thanks to the flexibility and 
efficiency of the IRT in TOPAS-nBio, 
the following simulations can be/has 
been done:

Ø Accurate G-values calculations.
Ø Dose dependent G-values.

Ø Radiation pulses.
Ø Intertrack effects.

Ø Automatic pH scalation of reaction rates.
Ø Fricke Dosimeter.

Ø DNA damage simulations.
Ø Using plasmids.

Ø Temperature changes to chemistry 
parameters.

Ramos-Mendez, JA et al (2022). PMB, 67, 1–13. https://doi.org/10.1088/1361-6560/ac79f9

In water.

In plasmids
TOPAS-nBio
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DNA repair models
• Analytic models: Lethal-Potentially Lethal lesion or Repair-Misrepair models.
• Many limited since they focus on a single pathway or endpoint.
• Active area of model development (e.g. McMahon et al. (2016), Warmenhoven et al. (2020))
• DAMARIS (University of Manchester) is a Monte Carlo based framework developed Geant4-

DNA for event-by-event tracking of individual DSB ends. Includes multiple endpoints.

Direct damage

Excitation

Ionization

+

Indirect damage

Radiolysis of H2O

Nonhomologous end joining
Homologous Recombination

Chromosome aberrations
Foci formation
Cell survival

Mechanism Process

DNA REPAIR MODELS
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• DNA Mechanistic Repair Simulator (DaMaRiS) –
University of Manchester

• Model of the c-NHEJ pathway
• A mechanistic, Monte Carlo based framework that was 

developed within the Geant4-DNA tool-kit and allows 
for event-by-event tracking of individual DSB ends.

• Available within Topas-nBio

Warmenhoven et al. (2020) DNA Repair, 85,102743,

DNA REPAIR MODELS



Zhu et al. (2020) Radiat. Res 194, 9.

DNA DAMAGE AND REPAIR MODELING
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Zhu et al. (2020) Radiat Res 194, 9.

DNA DAMAGE AND REPAIR MODELING
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SUMMARY
• Geometry Developments: DNA models incorporating Hi-C data and mixed 

levels of euchromatin and heterochromatin.
• Goal: capture cell line specificity.

• Chemistry: Implementation of IRT.
• Goal: improve efficiency, accuracy and usability of chemistry models. 

• DNA Repair Models: Incorporate DNA repair to better predict outcomes.
• Goal: include more DNA repair pathways.

• Challenges: uncertainty in parameters, approximations, lack of 
experimental data.
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