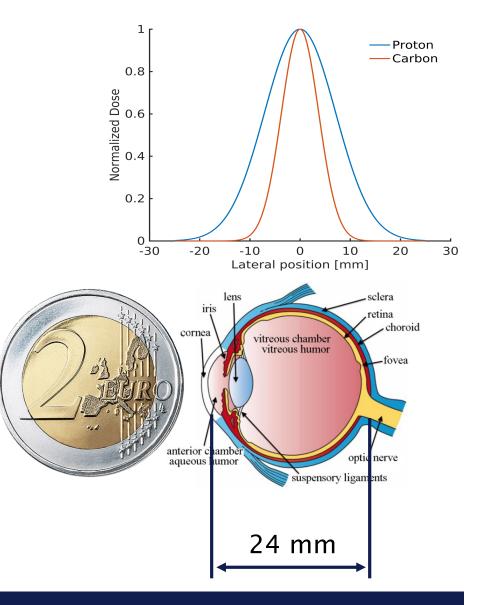
Benchmarking GATE/Geant4 and RayStation MC for pencil beam scanning light ion beams in combination with a passive beam collimation

A. F. Resch^{1,2}, M. Janson³, M. Stock^{2,4}, D. Georg¹ and B. Knaeusl¹

¹Department of Radiation Oncology, Medical University Vienna and General Hospital Vienna, Austria ²Department of Medical Physics, MedAustron Ion Therapy Centre, Wiener Neustadt, Austria ³RaySearch Laboratories, Stockholm, Sweden

⁴ Karl Landsteiner University of Health Sciences, Wiener Neustadt, Austria



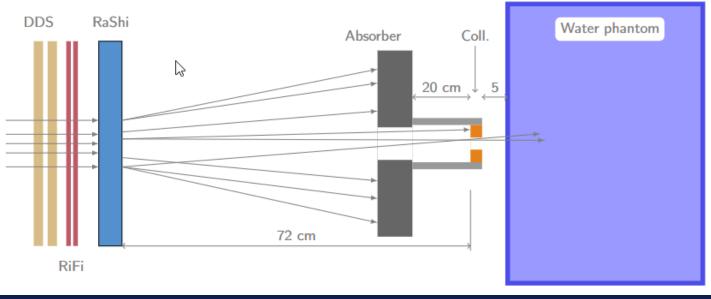
Motivation

- Pencil beam (PB) scanning
 - Available initial proton energies
 - Active: ~ 60 250 MeV
 - Passive energy degradation (range shifters) to generate lower energies
 - → broadens the PB profile due to MCS
- Passive beam collimation
 - Collimators can improve the lateral dose fall-off
- Combine collimator and PB scanning to create small fields with sharp edges
 - ➔ Possible applications: Ocular tumors, small animal irradiation

MEDICAL UNIVERSITY OF VIENNA

Purpose

- Validate the Monte Carlo dose engine of the commercial treatment planning system (TPS) RayStation
 - ... against GATE/Geant4 simulations
 - ... against experimental data
- Validate dose calculation accuracy of GATE/Geant4
 - ... using experimental data
- Acquire experimental data



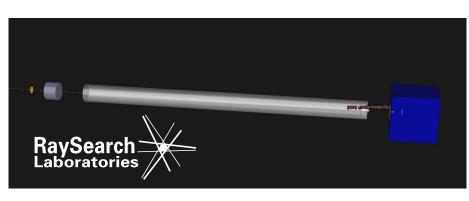
Beamline setup

• Beam

- Active scanned proton pencil beams
- Mono energetic ~ 69 97 MeV
- Clinical nozzle
 - Range shifter (30 mm PMMA) 72 cm upstream of isocenter

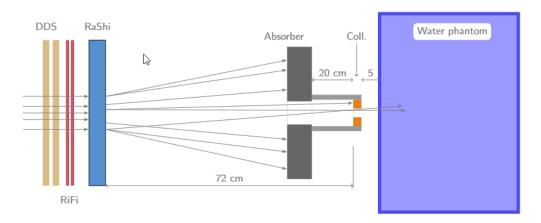
- Passive beam modifier
 - Plastic off-axis absorber (35.5 mm aperture)
 - → Narrower aperture than downstream element: "Taper"
 - Steel pipe (38 mm aperture)
 - Brass collimator 5 cm from surface
 - Aperture diameter: 5 34 mm

Simulation setup


Treatment planning system GATE 9.1/Geant4 10.6

- RayStation 11B, RaySearch laboratories
 - Dose algorithm: Monte Carlo
 - Off-axis absorber and pipe not included
 - MCS threshold varied: 5, 15, 30 MeV
- Beam model •

MEDICAL UNIVERSITY


OF VIENNA

Based on open beam data only

MedAustron 🏻

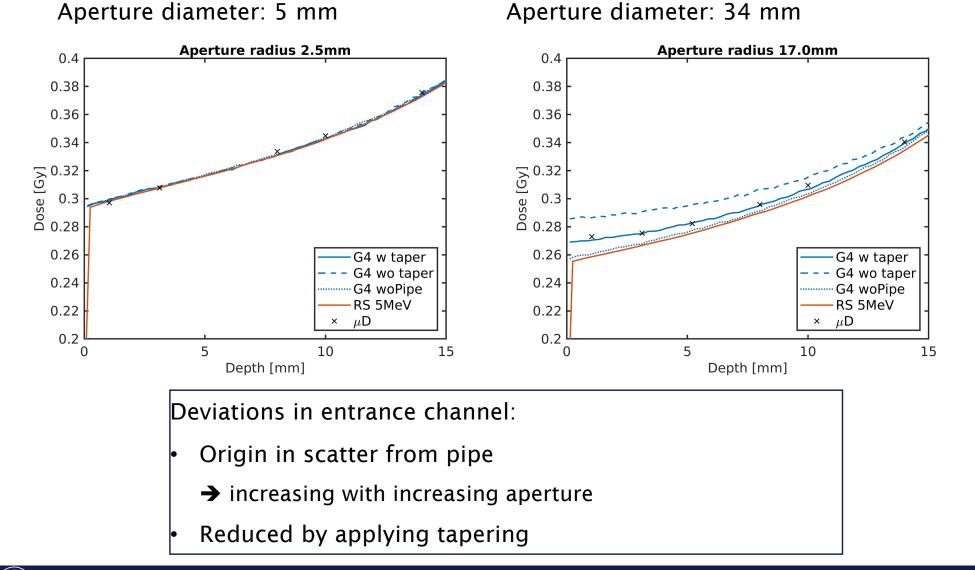
- Scoring •
 - Dose to water, beam guality correction factors
- Extensively validated beam model
 - Elia et al. 2019, Resch et al. 2019
- Full description of geometry
 - Nozzle elements
 - Passive absorbers, collimator, pipe

Measurement overview

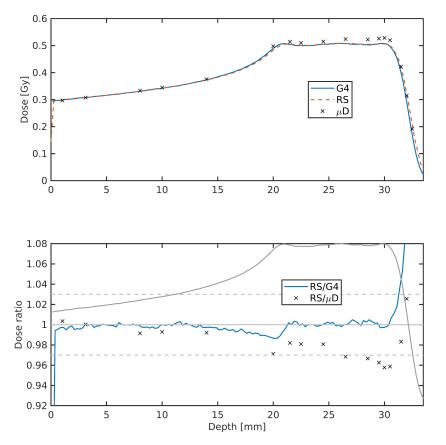
- Beams
 - Mono energetic beams
 - Spread out Bragg peaks
 - Range in water: 3, 5, 10, 30 mm
 - Modulation width: 3, 5, 10, 30 mm
- Collimator apertures
 - 5 aperture diameters: 5, 8, 10, 15, 34 mm
- Evaluation quantities:
 - Absorbed dose to water

- Measurement devices
 - Water phantom MP3-P, PTW
 - Detector beam alignment accuracy <
 0.2 mm (measured)
 - Depth dose profiles
 - Advanced Markus IC, T34045, PTW, Germany
 - MicroDiamond (MD), T6019, PTW, Germany
 - Lateral profiles
 - GAFchromic EBT3 films, Ashland
 - Resolution: 300 dpi (0.08 mm pixel length)

Results: Depth dose profiles Deep targets

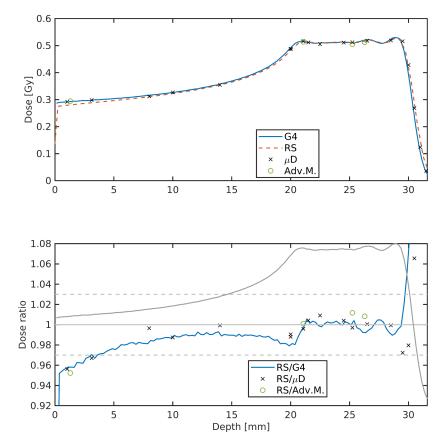

0.6 0.5 0.4 0 [Gy] 0.2 G4 ٠RS 0.1 × μD Adv.M. 0 5 10 15 25 30 20 0 1.08 1.06 1.04 1.02 Dose ratio 1 0.98 0.96 RS/G4 RS/µD × 0.94 RS/Adv.M. 0 0.92 5 10 20 25 30 15 0 Depth [mm]

Aperture diameter: 15 mm


• SOBP:

- Less than 1% dose deviation in SOBP
- Entrance region (depth < 5 mm)
 - Up to 5% dose deviation

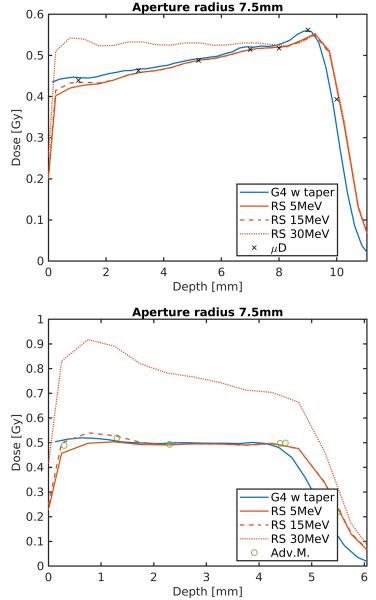
Results: Depth dose profiles Deep targets – entrance region aperture dependence



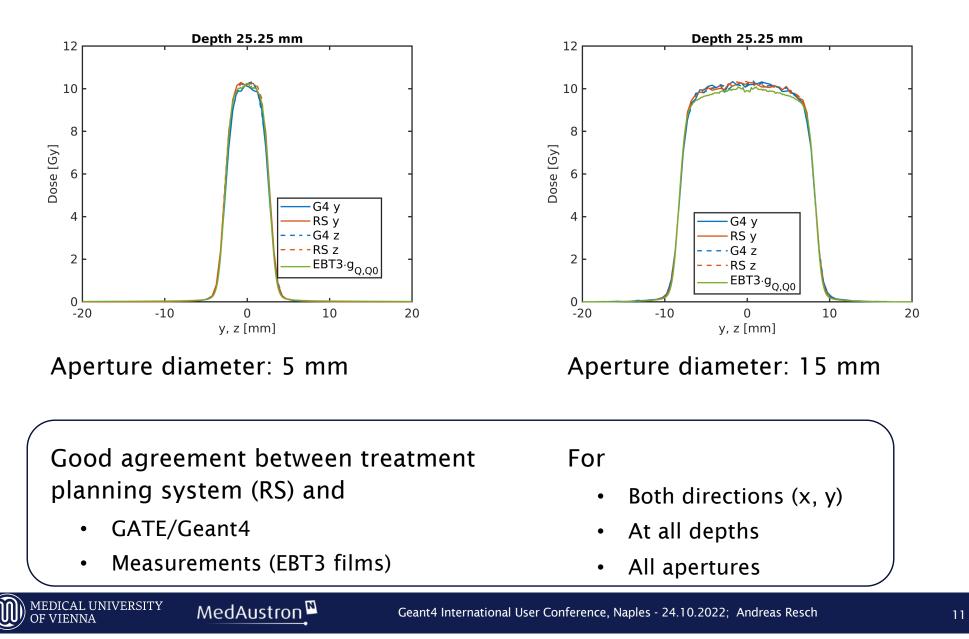
Results: Depth dose profiles Smallest possible aperture?

Aperture diameter: 5 mm

- GATE/Geant4 and RayStation agree well
- Measurements deviate up to 5%


Aperture diameter: 8 mm

- GATE/Geant4, RayStation and measurements agree
- → Define 8 mm diameter as lower limit


Results: Depth dose profiles Shallow targets

- SOBP ranges < 10 mm depth (water)
- Strong dependence on Multiple Coulomb Scattering threshold
 - Default (30 MeV) not acceptable for shallow targets with Ocular setup
 - Energy threshold < 15 MeV sufficient for targets SOBP ranges > 5 mm
 - MCS threshold in range shifter = 5 MeV in RayStation 12A

E [MeV]	CSDA range [mm]
5	0.4
15	2.5
30	8.8

Results: Lateral dose profiles Center of SOBP

Summary & Conclusions

- Dose calculation of PB scanning in combination with a collimator successfully validated for
 - RayStation 11B with option for reduction of MCS threshold
 - GATE/Geant4 10.6
- Valid for
 - SOBP range in water: 5 mm < depth < 35 mm
 - Aperture: 8 mm < diameter < 34 mm
 - Commercial TPS dedicated for pencil beam scanning can be used clinically, but MCS threshold (upstream the patient) must be reduced
 - → Threshold updated in RayStation 12A
 - → GATE/Geant4 dose calculation accuracy sufficient

Acknowledgment

- All co-authors
- Hugo Palmans & Patrick Roisl, MedAustron Ion therapy Centre
- Lorenz Langgartner & Milovan Regodic, Medical University of Vienna
- GATE and Geant4 collaboration
- The funding by the FFG, Austria, is gratefully acknowledged

Thank you for your attention!