

4He dose- and track- averaged Linear Energy Transfer: Monte Carlo algorithms and experimental verification

<u>G. Petringa</u>, S. Agosteo, D. Bortot, V. Conte, G. Cuttone, A. Di Fini, S. Fattori, D. Mazzucconi, L. Pandola, I. Petrovic, A. Rosenfeld, A. Ristic-Fira, U. Weber and G.A.P. Cirrone

Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy)

Outline

- Linear Energy Transfer: a new approach
- Validation study with 4He beams
- Pristine and Modulated Bragg peak with ridge and ripple filters
- Secondary particles contribution
- Biological damage estimation
- Next steps

Linear Energy Transfer

Linear Energy Transfer: a new approach

Linear Energy Transfer: a new approach

Hadrontherapy: a Geant4 advanced Example

6

Geometry: Passive ProtonBeam Line Passive CarbonBeam Line Laser DrivenBeamLine TrentoPassiveProtonBeamLine

Hadrontherapy

A G4 advanced Example dedicated to radiobiological studies

Calculation of radiobiological

quantities:

☑ Dose

✓ LET-dose

☑ LET-track

ĭ RBE

Primary Event Generator:

✓ Standard GPS definition
 ✓ External Source

Physics Lists:

MADRONTHERAPY 1

MADRONTHERAPY 2

new Physics for proton enhancement

A validation study with 4He beams

7

nicrodosimetri

Adopted

detectors

mean-chord-length: 306 ± 1nm

nano-TEPC (LNL & MI - INFN)

Experimental run @LNS-INFN

- 4He beam 62 AMeV
- **Configuration A**: Pristine peak with the MicroPlus probe;
- **Configuration B**: Modulated peak (with ridge filter) with MicroPlus probe;
- **Configuration C**: Modulated peak (with ripple filter) with nano-TEPC.

mean-chord-length: 17 ± 0.5 um

Microplus probe (UOW & LNS-INFN)

Pristine and Modulated Bragg peak with ridge filter

⁸ Microplus probe

Modulated Bragg peak with ripple filter

⁹ nano-TEPC

Secondary particles contribution estimation

G Petringa, PhD - giada.petringa@Ins.infn.it

Biological damage

- $RBE_{4.0}$ (RBE > 4.0): LET in the range 100 200 keV/ μ m
- $RBE_{3.5}$ (RBE > 3.5): LET in the range 100 300 keV/ μ m
- $RBE_{3.0}$ (RBE > 3.0): LET in the range 75 300 keV/ μ m
- $RBE_{2.5}$ (RBE > 2.5): LET in the range 50 500 keV/ μ m
- $RBE_{2.0}$ (RBE > 2.0): LET in the range 25 600 keV/ μ m

RBE Level	LET	Z Value of Fragments	
		Entrance	Distal
4.0	Dose	3	2
3.5	Dose	3	2, 3 (configuration B and C)
3.0	Dose	3	2, 3 (configuration B and C)
2.5	Dose	2, 3, 4	2, 3, 4, 8
	Track	3, 4, 5, 8	2, 3, 4, 8
2.0	Dose	2, 3, 4, 5	2, 3, 4, 8

Biological damage

12

=> we can conclude that ions with very high LET (1000- 1500 keV/ m), which can be stoppers in sensitive volumes, do not produce essential change in a final RBE determination with depth, in 4He therapy

- $RBE_{4.0}$ (RBE > 4.0): LET in the range 100 200 keV/ μ m
- $RBE_{3.5}$ (RBE > 3.5): LET in the range 100 300 keV/ μ m
- $RBE_{3.0}$ (RBE > 3.0): LET in the range 75 300 keV/ μ m
- $RBE_{2.5}$ (RBE > 2.5): LET in the range 50 500 keV/ μ m
- $RBE_{2.0}$ (RBE > 2.0): LET in the range 25 600 keV/ μ m

RBE Level	LET	Z Value of Fragments	
		Entrance	Distal Lithium and
4.0	Dose	3	2
3.5	Dose	3	2, 3 (configuration B and C)
3.0	Dose	3	2, 3 (configuration B and C)
2.5	Dose	2, 3, 4	2, 3, 4, 8
	Track	3, 4, 5, 8	2, 3, 4, 8
2.0	Dose	2, 3, 4, 5	2, 3, 4, 8

Z= 9 and Z=10, besides having a subdominant relative fluence, do not participate in any of the RBE levels defined

Next steps

13

Validation with12C and 16O beams

- * two experimental campaigns were already performed @LNS-INFN adopting Microplus probe detector;
- * a collaboration with the Vinca Institute (Belgrade) is currently on going to correlate the LET (experimental and simulated) with the observed radiobiological damage in biological samples;
- * the LET calculation and secondary estimation of 160 is ongoing;
- a new microdosimeter based on the Silicon Carbide techonology will be developed @LNS (preliminary experimental test with proton beams with energies between 30 to 150 MeV was already performed)

Cuttone, Giada Retringa, Gustavo Messina INFN-LNS Medical Physics Group - Catania, April 30, 2021.

Different approaches for the same quantity

Linear Energy Transfer: a new approach

16

The total electronic stopping powers Li were extracted at each particle step i, using the method **ComputeElectronicDEDX**() belonging to the Geant4 **G4EmCalculator class.** This function, in fact, retrives Li from the electronic stopping power tables built at the beginning of the simulation, once the particle type, kinetic energy and material are provided.

$$\bar{L}_{d} = \frac{\sum_{i=1}^{N} L_{i}\varepsilon_{i}}{\sum_{i=1}^{N} \varepsilon_{i}}$$

$$\bar{L}_{T} = \frac{\sum_{i=1}^{N} L_{i}l_{i}}{\sum_{i=1}^{N} l_{i}}$$

$$\bar{L}_{T} = \frac{\sum_{i=1}^{N} L_{i}l_{i}}{\sum_{i=1}^{N} l_{i}}$$

$$\bar{L}_{T} = \frac{\sum_{i=1}^{N} L_{i}l_{i}}{\sum_{i=1}^{N} L_{i}l_{i}}$$