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Treatment plan optimization

Choice of angles, energies and
intensities of the beamlets

to
Fit dose medical prescription

Now:

2 steps

Energy optimisation Fluency optimisation _
Room for improvement

Traditional sequential algorithms
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Today

VMAT
Volumetric Modulated Arc Therapy

Tomorrow

FLASH radiotherapy

Complex optimisation!

Opportunity to choose entry angle from continuous

Sub-optimal optimisation:

* New angles added In steps

* Trade off between quality
and time

Clinical unmet need for Treatment

Planning System (TPS)




Our Goal > Writing the Dose to each

organ as a function of
beam parameters

CT scan DL

Organs’ density —} algorithm —}

Prescribed dose

Optimised
treatment plan

2 Phases
Energy Deposition Emulation Treatment Plan Optimisation
with starting with
Deep Neural Network Emulated energy

generative model deposition distributions



Energy Deposition Emulation

o Simulation of energy deposition of electrons
passing through matter, using Geant4

o 2 Geometry settings:
1. Water volume

2. Water volume + slice with variable
density d € [0, 5] g/cm’

» Inall cases E, € [50, 100] MeV

» Data collected in a cylindrical scorer made
up by 28 x 28 x 28 voxelsinr, @ and z



Cylindrical shape

Two main advantages:

 Reduce complexity without loss
of generalisation: the cylinder
follows the beam

 More precision near the beamline




Variational Auto Encoder (VAE)
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Results

* Energy profiles

e Voxel reconstruction
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Latent Space: Water Volume

Latent Space in 1 dimension

Sampling from Latent Space

— 80 -

Generating according to beam parameters
(and more)
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* |n this simple case:
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z Is linearly correlated with Particle Energy
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* |n More complex cases:
O Increase latent space dimensionality 707

—0.2 —0.1 0.0 0.1 0.2

O |atent space conditioning M1
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Latent Space: Water + Slice with variable density

80 -

Latent Space in 2 dimensions

1y and U, highly correlated with:

O Particle Energy
o Slice’s density

Particle Energy [MeV]
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\A The Network recognizes essential

parameters in the simulation
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Generation time

Physical Predictor >  Latent Space Decoder > Generated
Parameters P Dose Distribution
Geant4
10’000 primaries Graph VAE
Ge"e{gf;‘l’;)‘ time 82 s 0.02 s

Further advantages of Deep Learning approach: Up to X106
* Generation time is independent of number of primaries faster than MC
* (Generation time can be further reduced using GPUs
12



Conclusions

Deep Learning can have a huge

This was a proof-of-concept - ——l impact on today’s and future’s

Radiotherapy

loday =-—p Better and faster optimization for VMAT

Tomorrow == QOptimized treatments with FLASH therapy

Next steps:

* |ncreasing the complexity of the medium

 Phase 2: optimisation of treatment plan
13
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Thank you for your attention!

O Clinical unmet need for FLASH e- TPS and for better and faster
way to optimize VMALI treatment plans

o Potential huge impact on today’s and future’s Radiotherapy
o QOur Graph VAE emulates well dose distributions:
 Encoding and Decoding with graph layers
* Nearest Neighbours Pooling

O Generation is >1000x faster than Geant4

For any further information: lorenzo.arsini@uniroma.it


mailto:lorenzo.arsini@uniroma1.it

Outline

e Clinical unmet demand for TPS for VMAT and FLASH e-
* Generative Deep Learning approach

* Dataset

* Architecture: Graph Encoding and Decoding
* Results

* Perpectives
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Radiotherapy

* Globally, 18 million cases of cancer diagnosed in 2020

 Approximately 50% of all cancer patients should receive radiation

Today 99.9% of treatments are done with photons

References:

PhotonTherapy | HadronTherapy
Equipments ~15.000 ~100
Centers ~7.600 ~100
Countries 156 20

https://www.wcrf.org/cancer-trends/worldwide-cancer-data/

https://dirac.iaea.org

Delaney, G., Jacob, S., Featherstone, C. and Barton, M. (2005), The role of radiotherapy in cancer treatment. Cancer, 104: 1129-1137. https://doi.org/10.1002/cncr.21324

1€


https://doi.org/10.1002/cncr.21324

Current Radiotherapy

VMAT: Volumetric Modulated Arc Therapy

e Sophisticated therapy with photons used worldwide

* Opportunity to choose entry angle from continuous of 360°

BUT STILL =——- Sub-optimal optimisation:

O

e Trade off between
1“NewSampIe . .
Nn =Ny =6 Ny =Ny +1=7 N Ny 45211 Nawy =Ny +6=12 quality and time

Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008 Jan;35(1):310-7. doj; ]?.1 118/1.2818738. PMID: 18293586.

Initial Arc Samples

* New angles added In
steps




high-performance
electron

Future perspectives

FLASH radiotherapy
FLASH 7 /¢ healthy
Best candidates for it are jaree 0 tissue
electrons, in particular VHEE deep-seated spared
‘ l Full dose
Opportunity to choose gantry from less @

200 ms

the entire solid angle

Clinical unmet need for Treatment Planning System (TPS)
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Encoding

Graph Convolutions

|
x =W, x.+ W, — E X;
JEN()
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Graph Conv

AO AO
Pooling

Graph Convolutions

|
xi=W, x,+ Wy —— E X; A
S * NGy &~ :
JEN()

Recursive Nearest Neighbors Pooling

Recursively drop nearest neighbours and choose:
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Graph Conv

ﬁ

AO AO
Pooling

Graph Convolutions

|
xi=W, x,+ Wy —— E X; A
S * NGy &~ :
JEN()

Recursive Nearest Neighbors Pooling

Recursively drop nearest neighbours an%choose:

Encoding

X5

A/=A2

13



Sampling

Reparametrisation trick

/L=U+e€-o
Flatten \
Encodlng Decoding

Dense Layer Dense Layer
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Decoding

Un-Pooling (

O % Recursive Nearest Neighbors Un-Pooling
2
O Embedding nodes In the previous bigger graph
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Decoding

X5

Graph Conv Graph Convolutions
ﬁ . .
Same as in the encoding
Un-Pooling
O % Recursive Nearest Neighbors Un-Pooling
2
O Embedding nodes in the previous bigger graph

A, 24 16



Graph Conv

Decoding

AO
Un-Pooling
X2

Graph Conv

Graph Convolutions

ﬁ . .
Same as in the encoding
Un-Pooling
O % Recursive Nearest Neighbors Un-Pooling
2
O Embedding nodes in the previous bigger graph

Az 25 17



Water volume + slice

Training specifications [ oran

Loss = BCE(X, )A() + KL(N (u,06) | A (0,1)) 2, ’
|

Reconstruction Regularisation

50 60 70 80 90 100
Particle Energy

timiser: Adam
Op SC da Water volume

Learning rate: 0.003 $ s
Scheduler: exponential A = 0.9

50 60 70 80 90 100
2 6 Particle Energy
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Particle energy = 70.01 MeV

Z Profile
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Results: Water Volume
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Average results:

*95% on z profile
*97% on r profile
*98% on Energy conservation
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Voxel reconstruction:

D, —D

S = real reco ‘

max(D.,., )

99,4% with 0 < 3%

0%, 94,6%
80% -
60% -

40% -

Percentage of voxels

20% -

4% 0.8% 0.3% 0.1%

0.00 0.01 0.02 0.03 0.04 0.05
Voxels relative error

0% -
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Results: Water + Slice with variable density

Particle energy = 70.18 MeV Slice density = 2.88 g/cm”™3

Zz Profile

r Profile
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Voxel reconstruction:

98,4% with 0 < 3%

91,6%

5% 1.8% 0.8% 0.4%

0.00 0.01 0.02 0.03 0.04 0.65
Voxels relative error



