

## Fast emulation of deposited dose distributions by means of Deep Learning

#### L. Arsini<sup>1,2</sup>, B. Caccia<sup>3</sup>, A. Ciardiello<sup>2</sup>, A. De Gregorio<sup>1,2</sup>, R. Faccini<sup>1,2</sup>, G. Franciosini<sup>1,2</sup>, S. Giagu<sup>1,2</sup>, A. Muscato<sup>4</sup>, C. Mancini Terracciano<sup>1,2</sup>

<sup>1</sup>Department of Physics, University of Rome "La Sapienza", Rome, Italy. <sup>2</sup>INFN, Section of Rome, Rome, Italy <sup>3</sup>Istituto Superiore di Sanità, Rome, Italy <sup>4</sup>Scuola post-laurea in Fisica Medica, University of Rome "La Sapienza", Rome, Italy

#### IV Geant4 International User Conference at the physics-medicine-biology frontier





## **Treatment plan optimization**

Choice of angles, energies and intensities of the beamlets

#### to

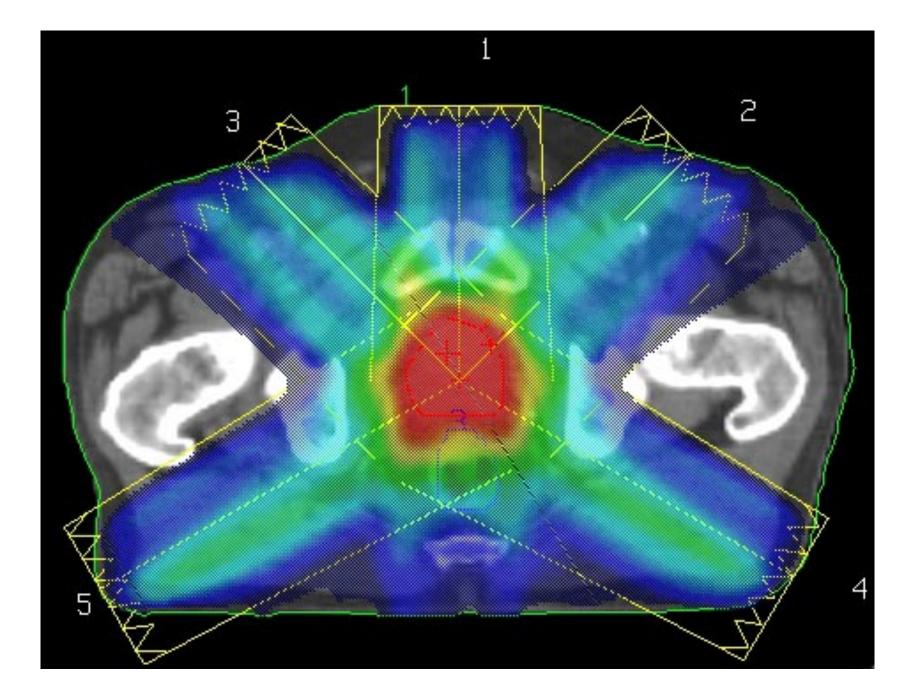
Fit dose medical prescription



### 2 steps

Energy optimisation Fluency optimisation

Traditional sequential algorithms



### Room for improvement

2



#### **VMAT Volumetric Modulated Arc Therapy**

### Opportunity to choose entry angle from continuous

### Sub-optimal optimisation:

- New angles added in steps
- Trade off between quality and time

## Tomorrow

#### **FLASH** radiotherapy

### **Complex optimisation!**

#### Clinical unmet need for Treatment Planning System (TPS)



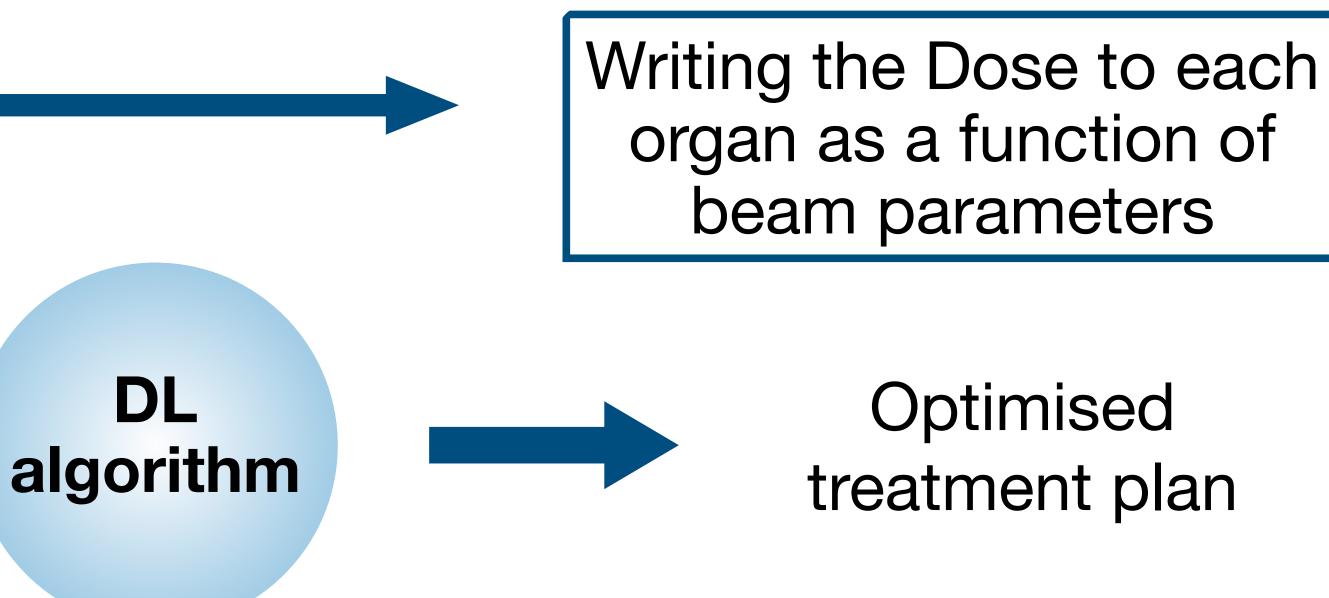


#### CT scan Organs' density Prescribed dose

### **Energy Deposition Emulation**

#### with

#### Deep Neural Network generative model



### 2 Phases

### **Treatment Plan Optimisation**

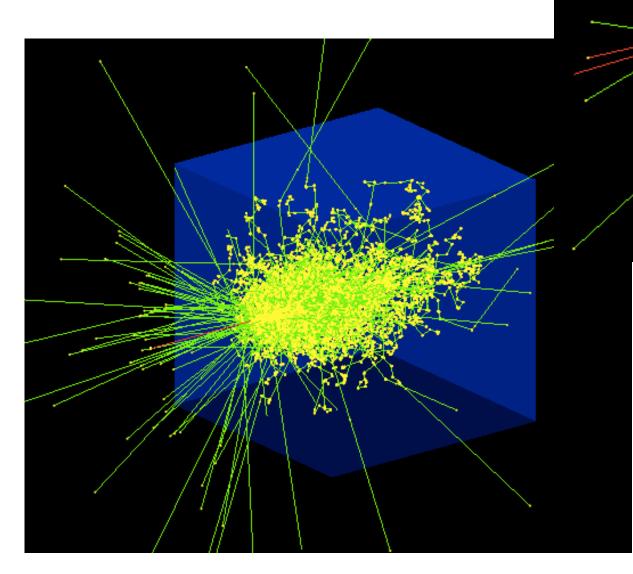
#### starting with

Emulated energy deposition distributions

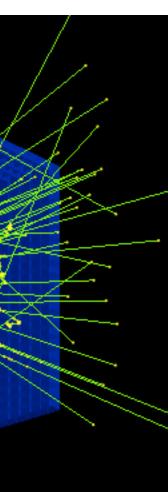


## **Energy Deposition Emulation**

- Simulation of energy deposition of electrons passing through matter, using Geant4
- 2 Geometry settings:
  - 1. Water volume
  - 2. Water volume + slice with variable density  $d \in [0, 5] g/cm^3$
- In all cases  $E_0 \in [50, 100] MeV$
- Data collected in a cylindrical scorer made up by 28 x 28 x 28 voxels in r,  $\theta$  and z





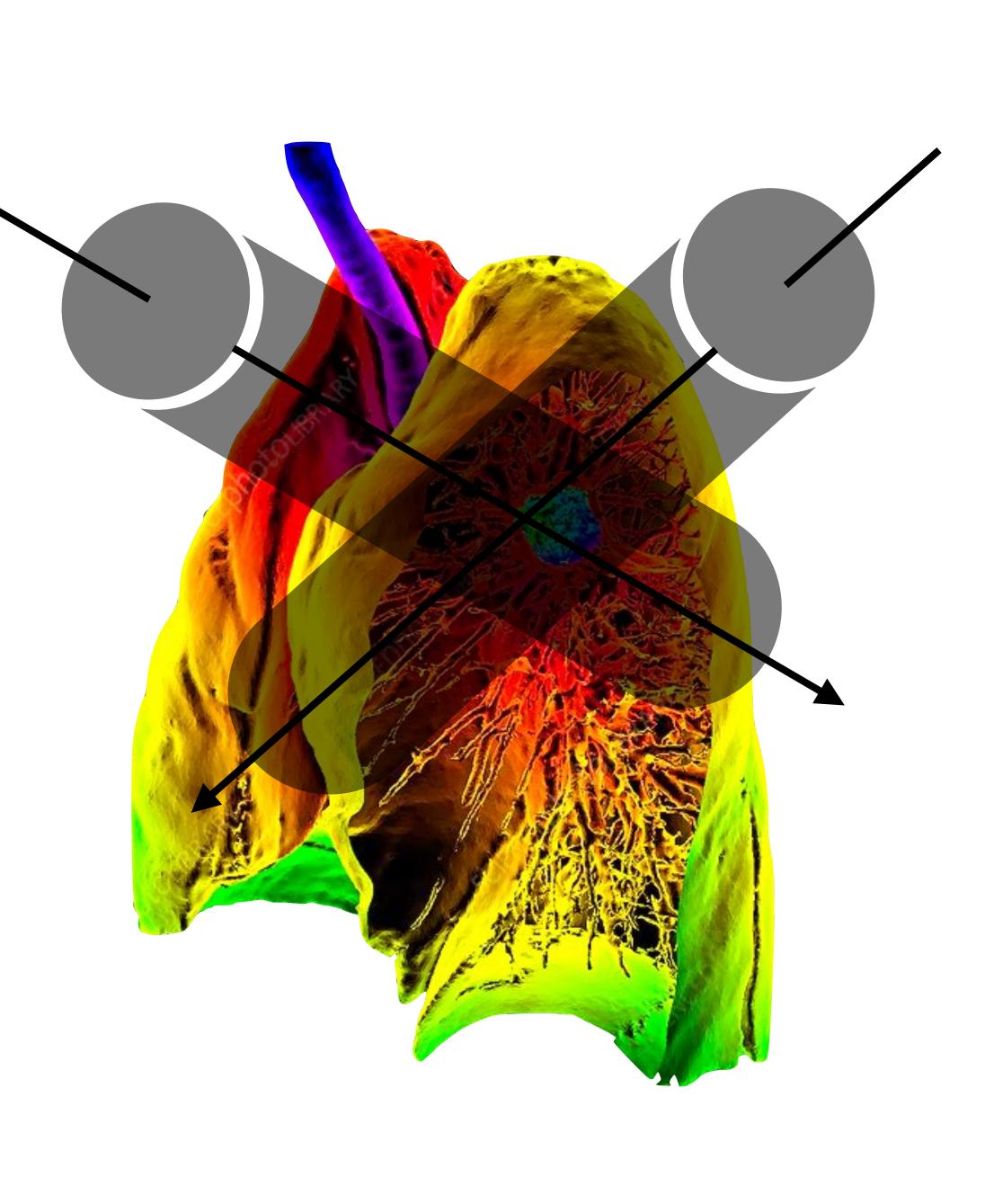




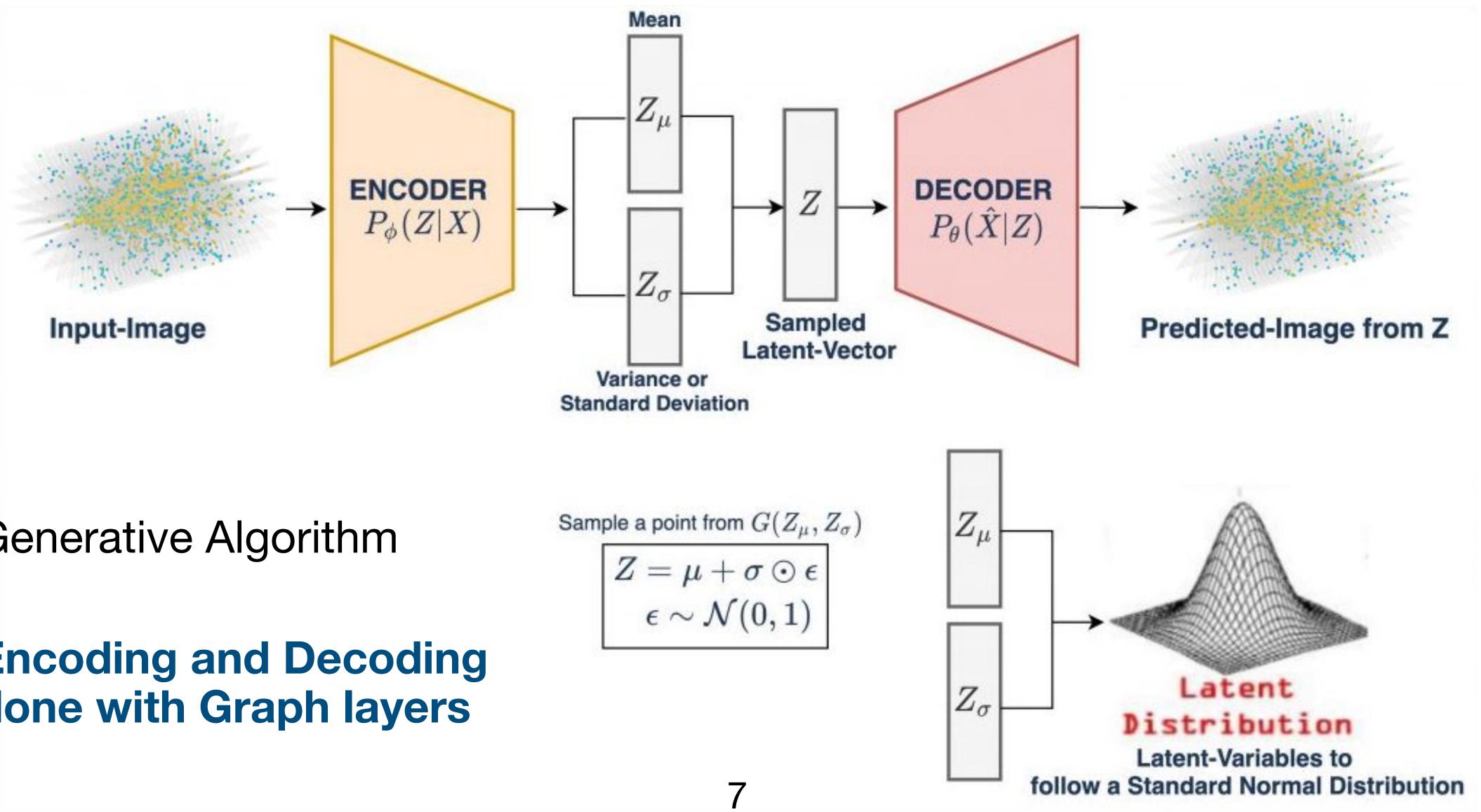
## **Cylindrical shape**

Two main advantages:

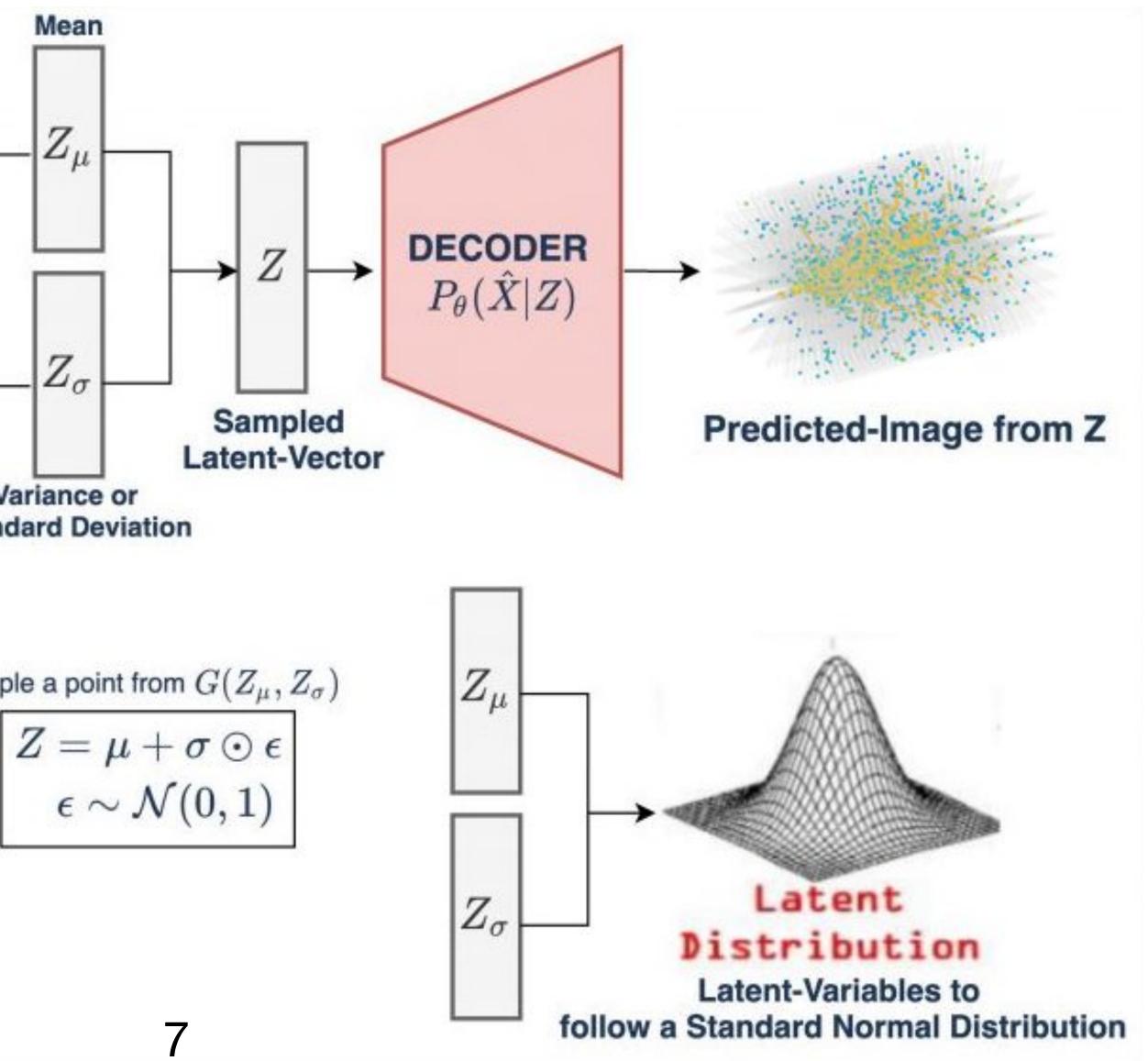
- Reduce complexity without loss of generalisation: the cylinder follows the beam
- More precision near the beamline



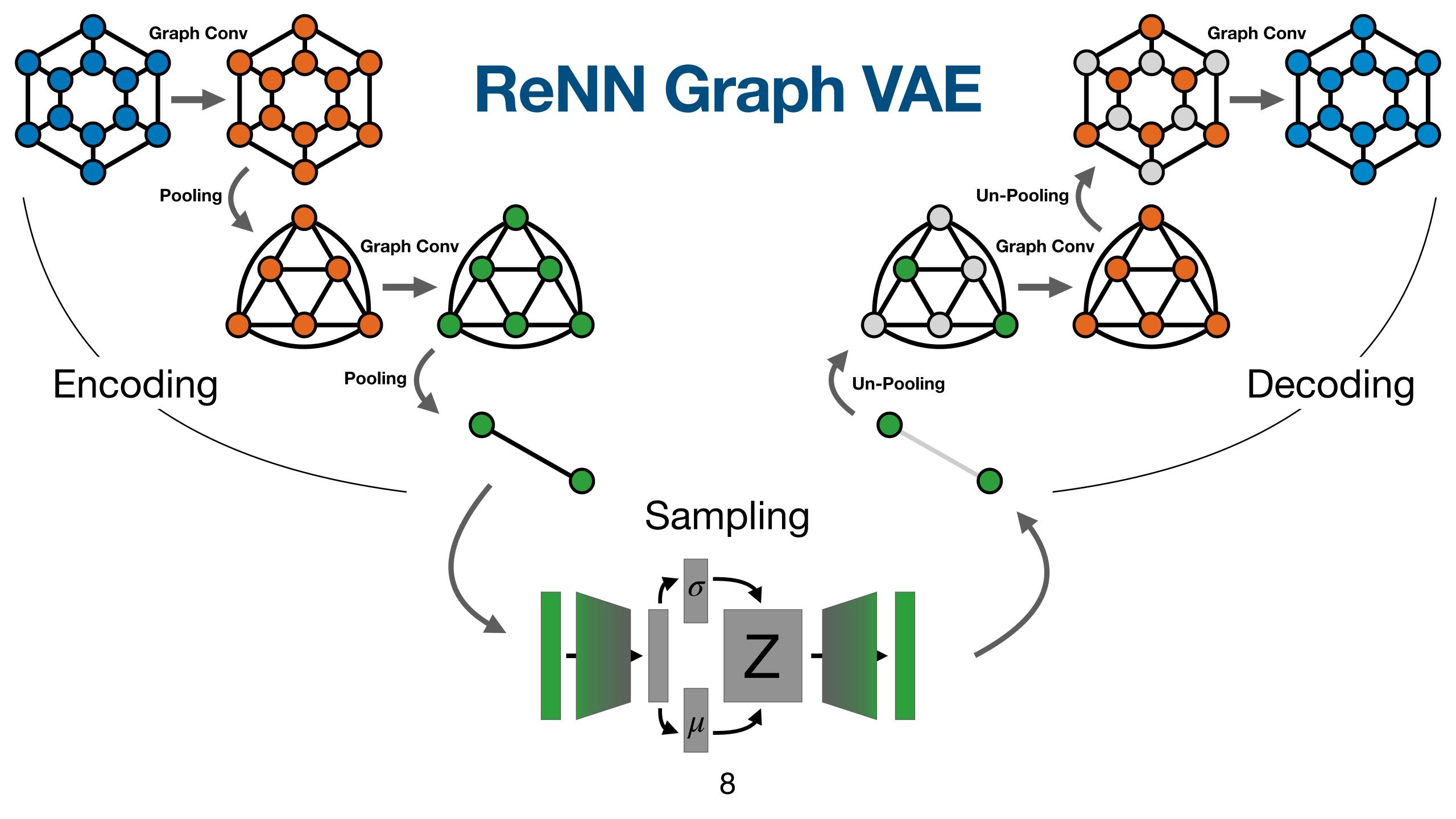
## Variational Auto Encoder (VAE)



Generative Algorithm



**Encoding and Decoding** done with Graph layers

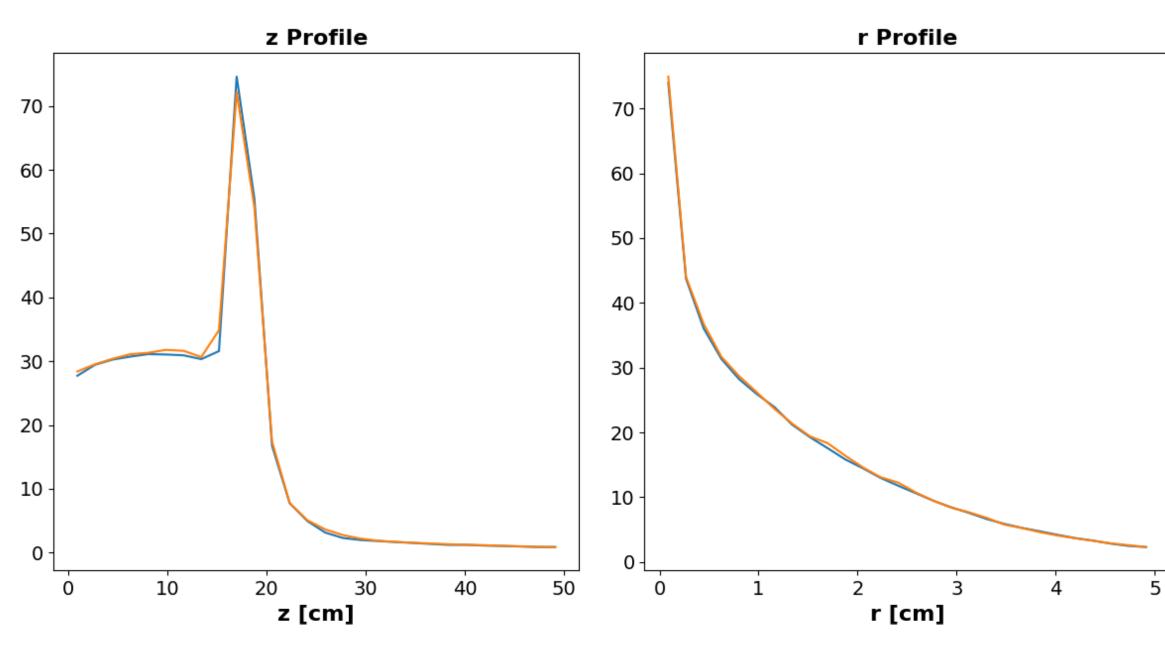


## Results

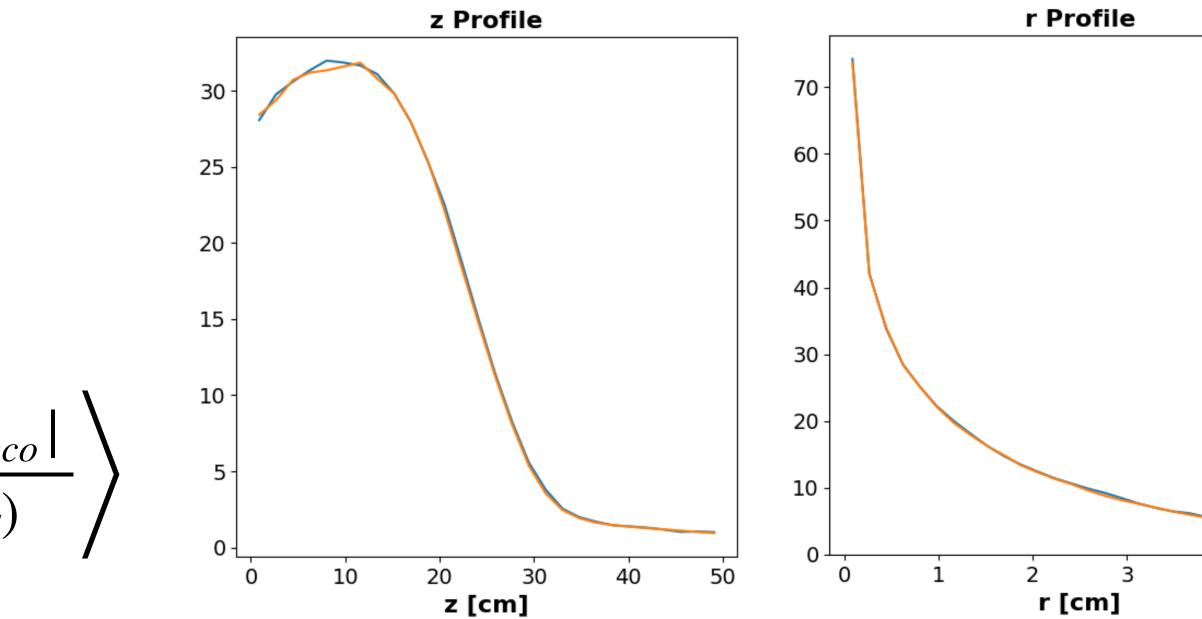
- Energy profiles
- Voxel reconstruction

$$\delta = \left\langle \frac{|D_{real} - D_{real}|}{max(D_{real})} \right\rangle$$

#### Water Volume + Slice

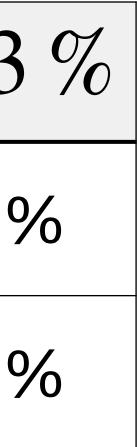


#### Water Volume



|                  | $\mathcal{E}_{\mathcal{Z}}$ | $\mathcal{E}_r$ | $\epsilon_E$ | $\delta < 3$ |
|------------------|-----------------------------|-----------------|--------------|--------------|
| Water            | 5%                          | 3%              | 2%           | 99.49        |
| Water +<br>Slice | 7%                          | 4%              | 2%           | 98.49        |





## Latent Space: Water Volume

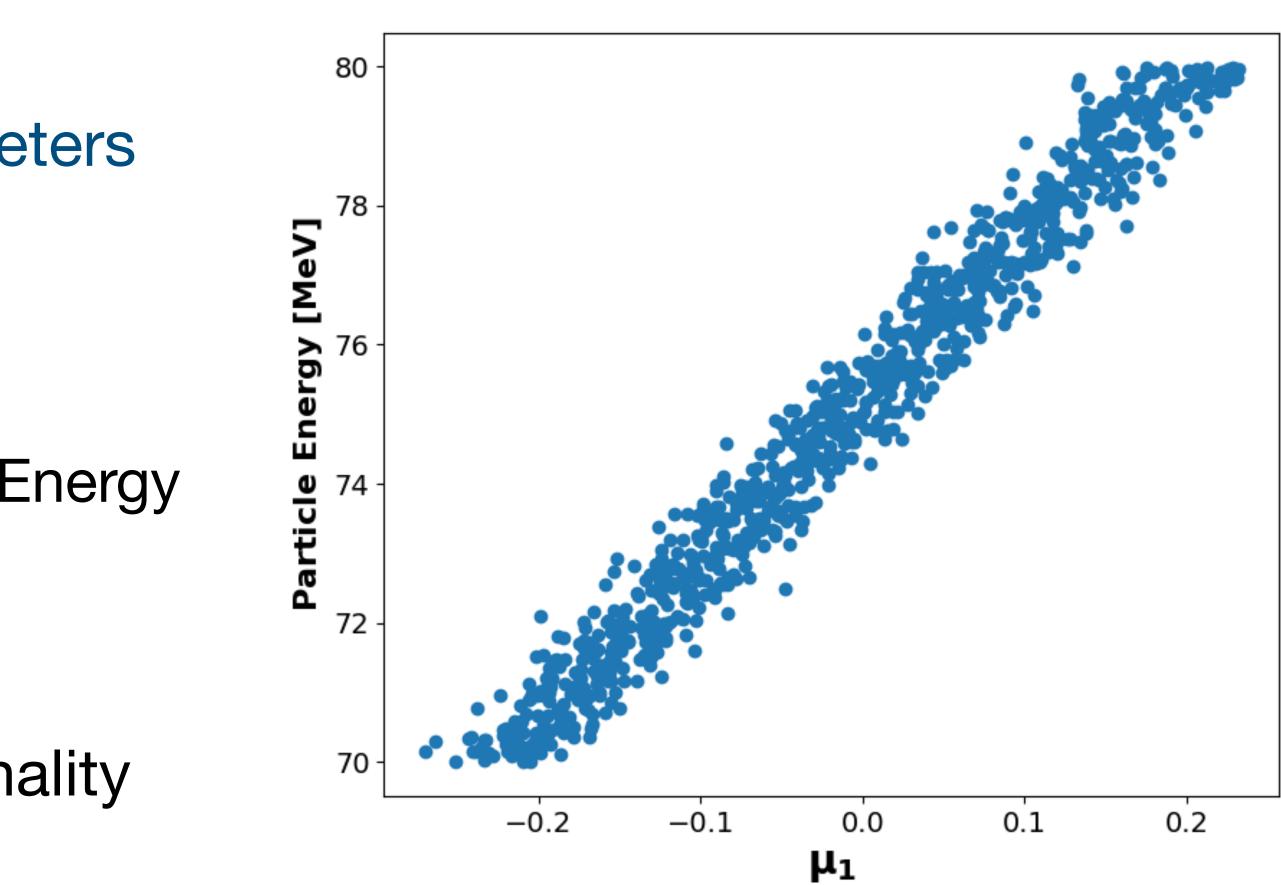
Sampling from Latent Space

Generating according to beam parameters (and more)

- In this simple case: z is linearly correlated with Particle Energy
- In more complex cases:
  - increase latent space dimensionality
  - latent space conditioning



#### Latent Space in 1 dimension

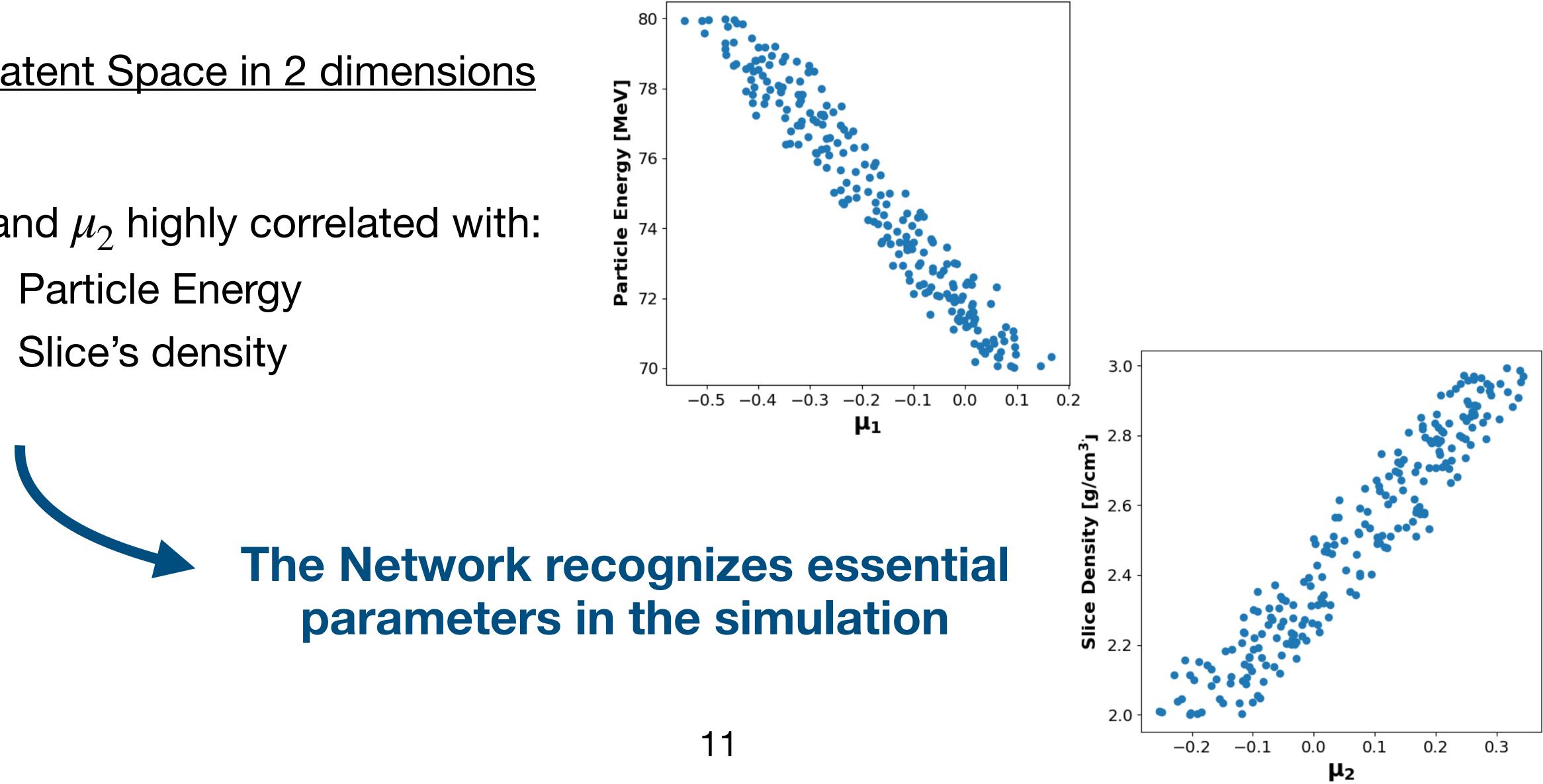


## Latent Space: Water + Slice with variable density

#### Latent Space in 2 dimensions

 $\mu_1$  and  $\mu_2$  highly correlated with:

- Particle Energy
- Slice's density



## **Generation time**

Physical **Parameters** 



|                          | Geant4<br>10'000 primaries | Graph VAE |
|--------------------------|----------------------------|-----------|
| Generation time<br>(CPU) | 82 s                       | 0.02 s    |

**Further advantages of Deep Learning approach:** 

- Generation time is independent of number of primaries
- Generation time can be further reduced using GPUs

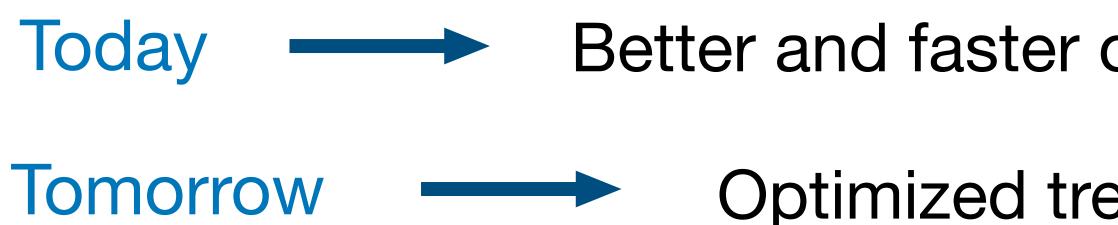
12

Up to x1 faster than MC



## Conclusions

This was a proof-of-concept



## Next steps:

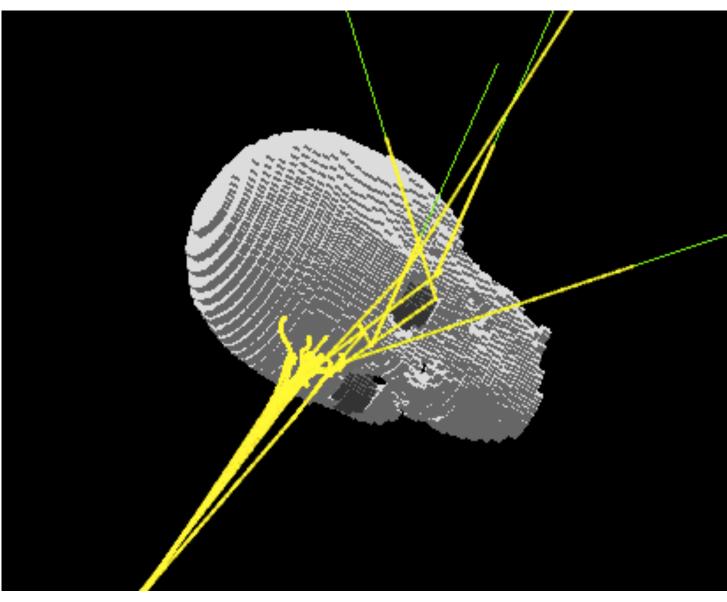
- Increasing the complexity of the medium
- Phase 2: optimisation of treatment plan

Deep Learning can have a <u>huge</u> impact on today's and future's Radiotherapy

#### Better and faster optimization for VMAT

### Optimized treatments with FLASH therapy

13









## Thank you for your attention!

- Clinical unmet need for FLASH e- TPS and for better and faster way to optimize VMAT treatment plans
- Potential huge impact on today's and future's Radiotherapy
- Our Graph VAE emulates well dose distributions:
  - Encoding and Decoding with graph layers
  - Nearest Neighbours Pooling
- Generation is >1000x faster than Geant4

For any further information: <u>lorenzo.arsini@uniroma1.it</u> 14



## Outline

- Generative Deep Learning approach
  - Dataset
  - Architecture: Graph Encoding and Decoding
- Results
- Perpectives

# Clinical unmet demand for TPS for VMAT and FLASH e-



## Radiotherapy

- Globally, 18 million cases of cancer diagnosed in 2020
- Approximately 50% of all cancer patients should receive radiation

Today 99.9% of treatments are done with photons

|            | PhotonTherapy | HadronT |
|------------|---------------|---------|
| Equipments | ~15.000       | ~1(     |
| Centers    | ~7.600        | ~1(     |
| Countries  | 156           | 20      |

**References:** 

https://www.wcrf.org/cancer-trends/worldwide-cancer-data/

https://dirac.iaea.org

Delaney, G., Jacob, S., Featherstone, C. and Barton, M. (2005), The role of radiotherapy in cancer treatment. Cancer, 104: 1129-1137. https://doi.org/10.1002/cncr.21324





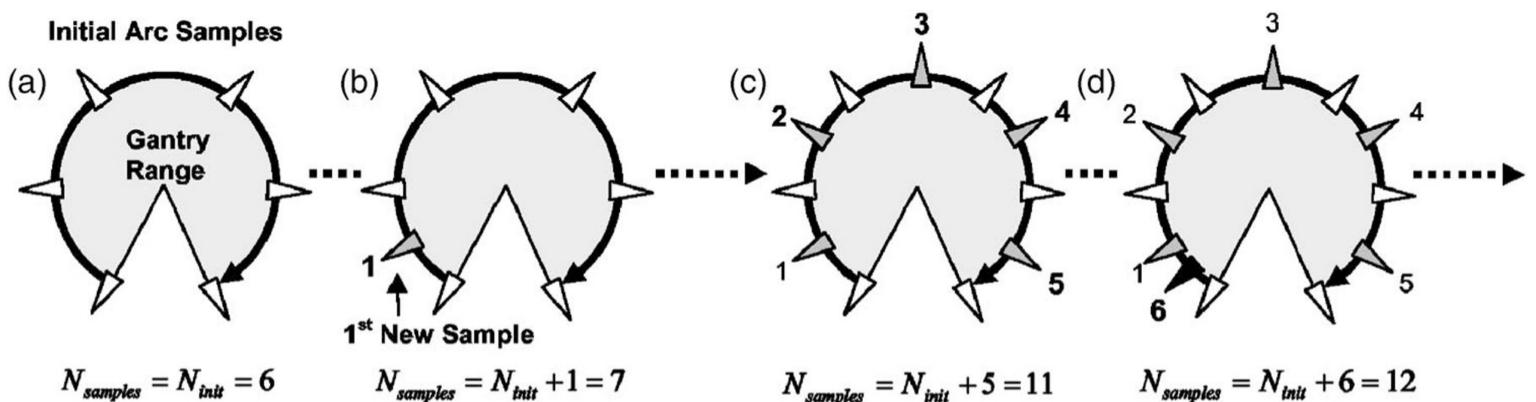
16

## **Current Radiotherapy**

### **VMAT: Volumetric Modulated Arc Therapy**

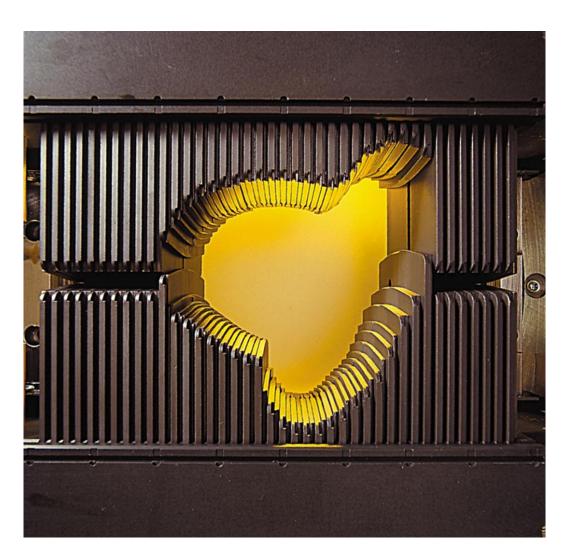
- Sophisticated therapy with photons used worldwide
- Opportunity to choose entry angle from continuous of 360°

### **BUT STILL**



Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008 Jan;35(1):310-7. doi: 10.1118/1.2818738. PMID: 18293586.





### <u>Sub-optimal optimisation:</u>

- New angles added in steps
- Trade off between quality and time



## Future perspectives

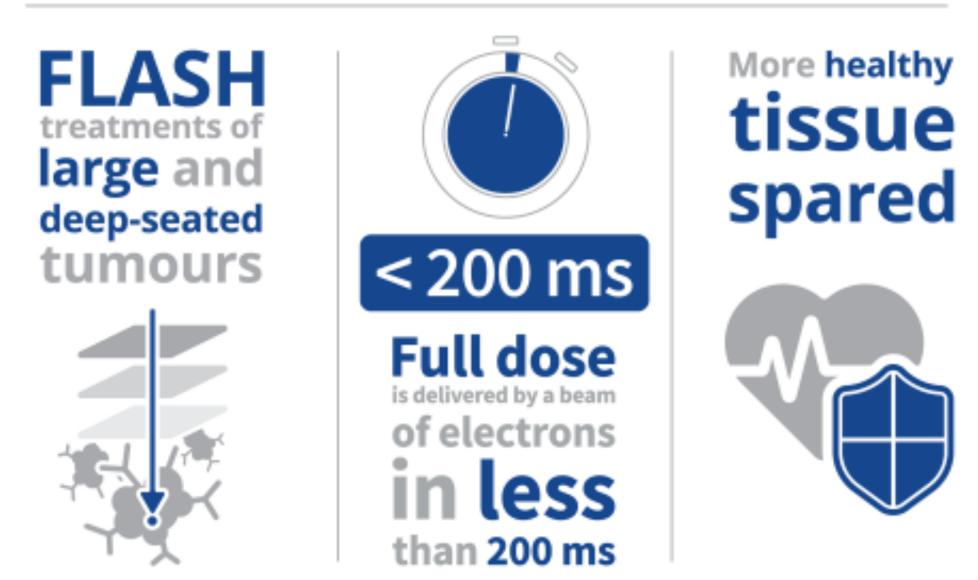
### **FLASH radiotherapy**

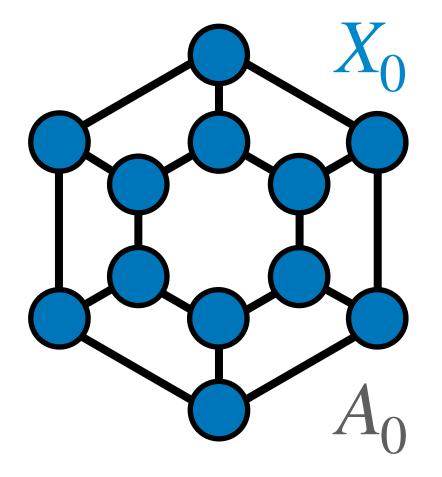
Best candidates for it are electrons, in particular VHEE

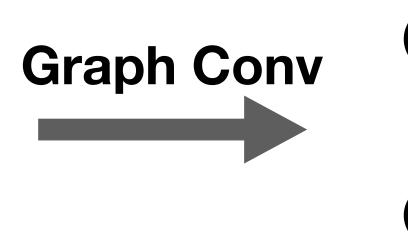
Opportunity to choose gantry from the entire solid angle

### Clinical unmet need for Treatment Planning System (TPS)

#### CLIC high-performance linear electron accelerator technology

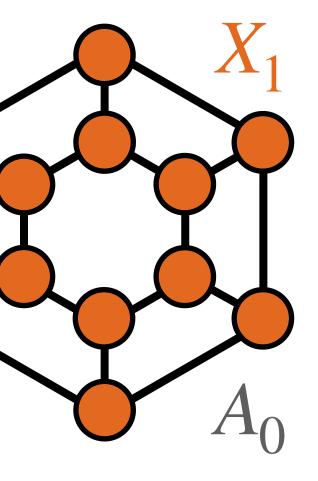






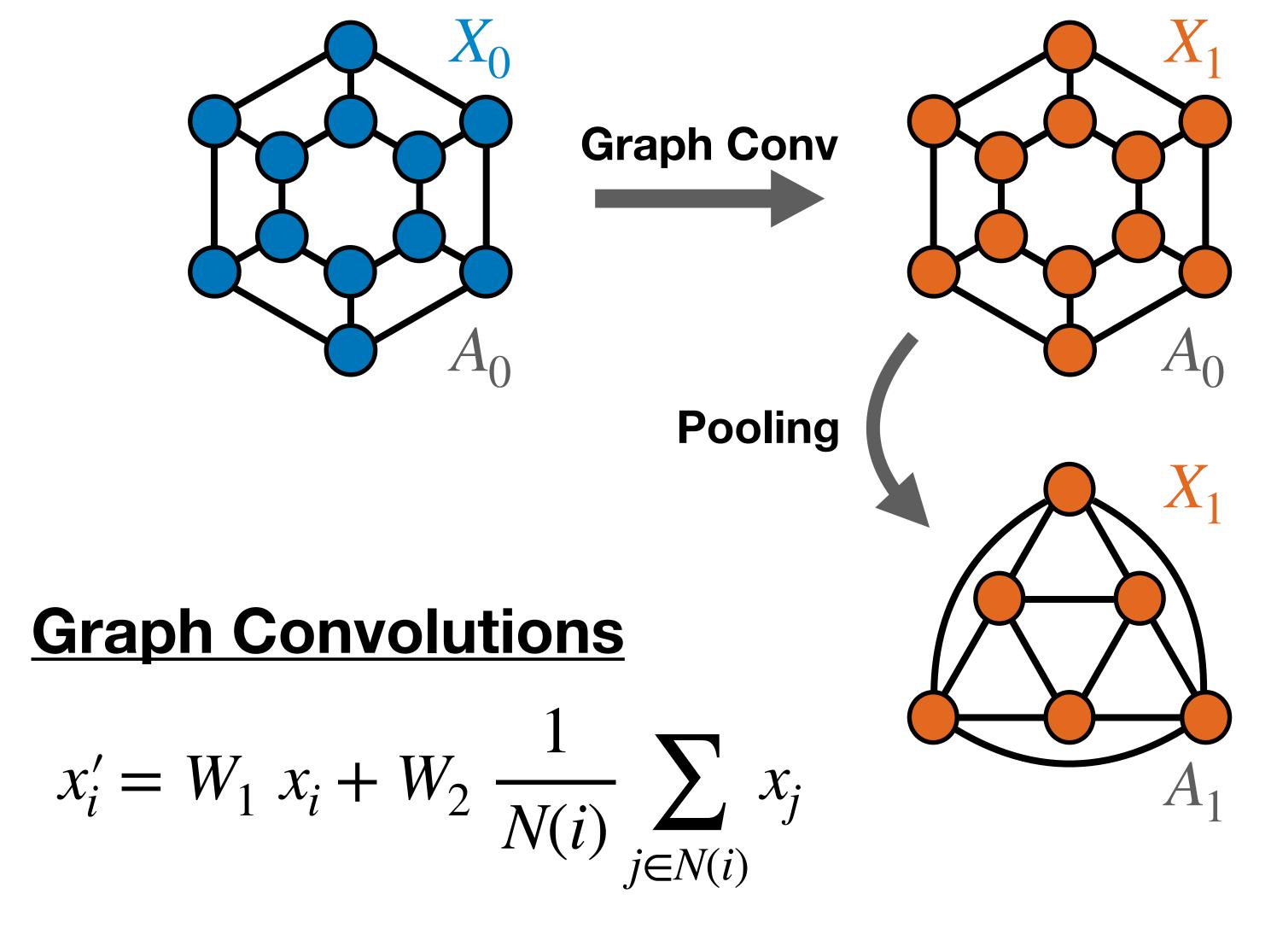
### **Graph Convolutions**

$$x'_{i} = W_{1} x_{i} + W_{2} \frac{1}{N(i)} \sum_{j \in N(i)} x_{j}$$



## Encoding

11

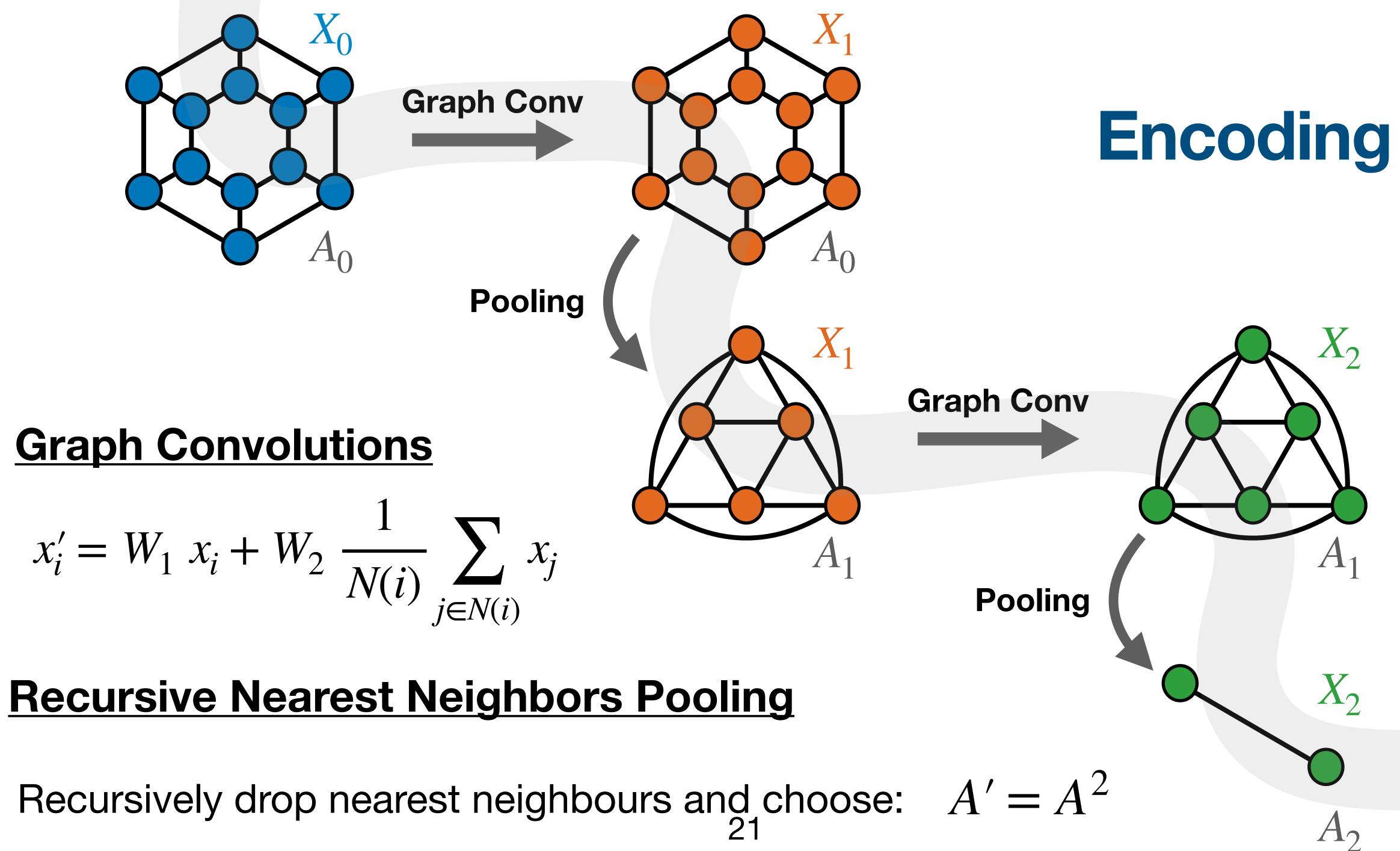


### **Recursive Nearest Neighbors Pooling**

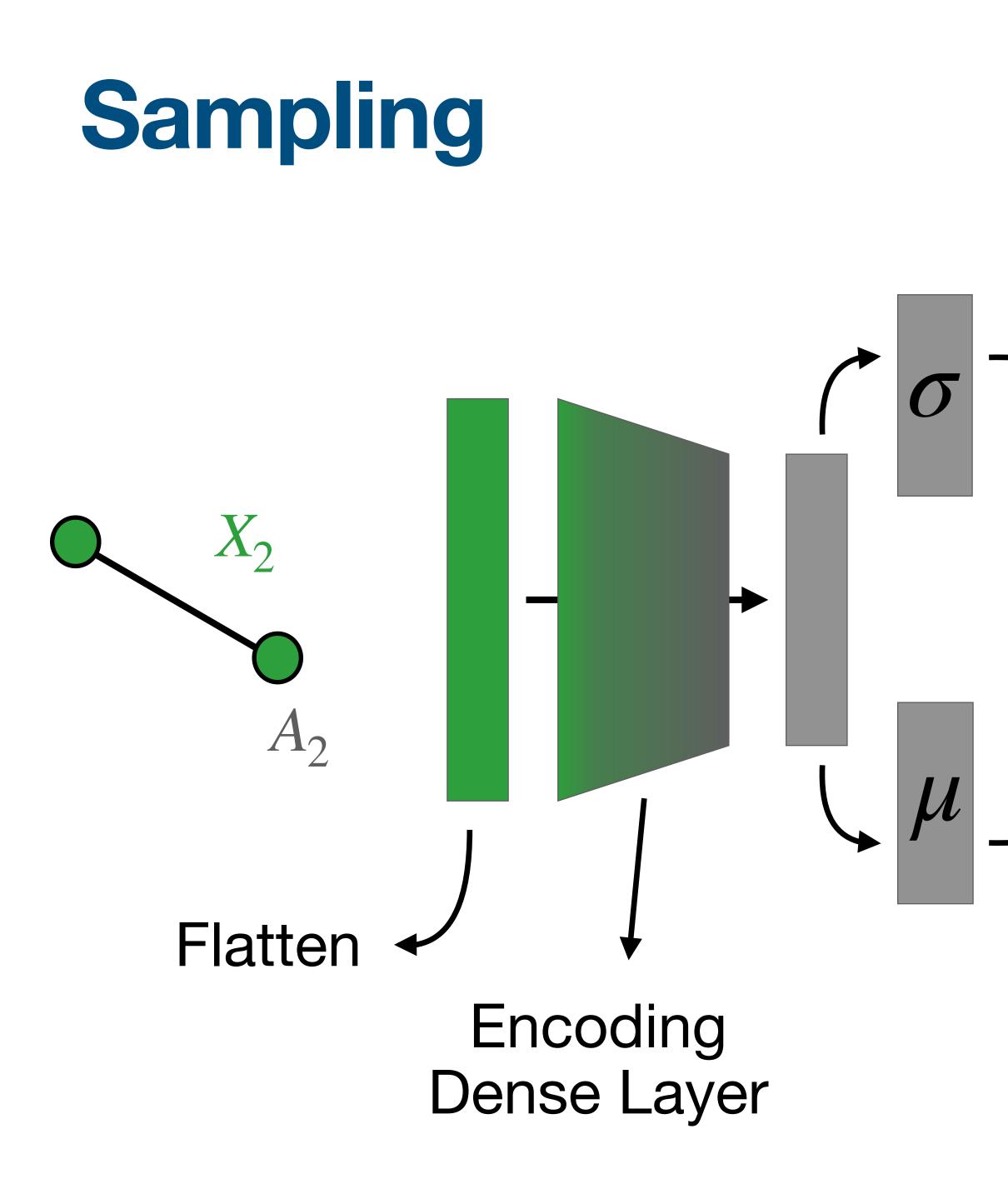
Recursively drop nearest neighbours and choose:  $A' = A^2$ 

## Encoding









## Reparametrisation trick $Z = \mu + \epsilon \cdot \sigma$

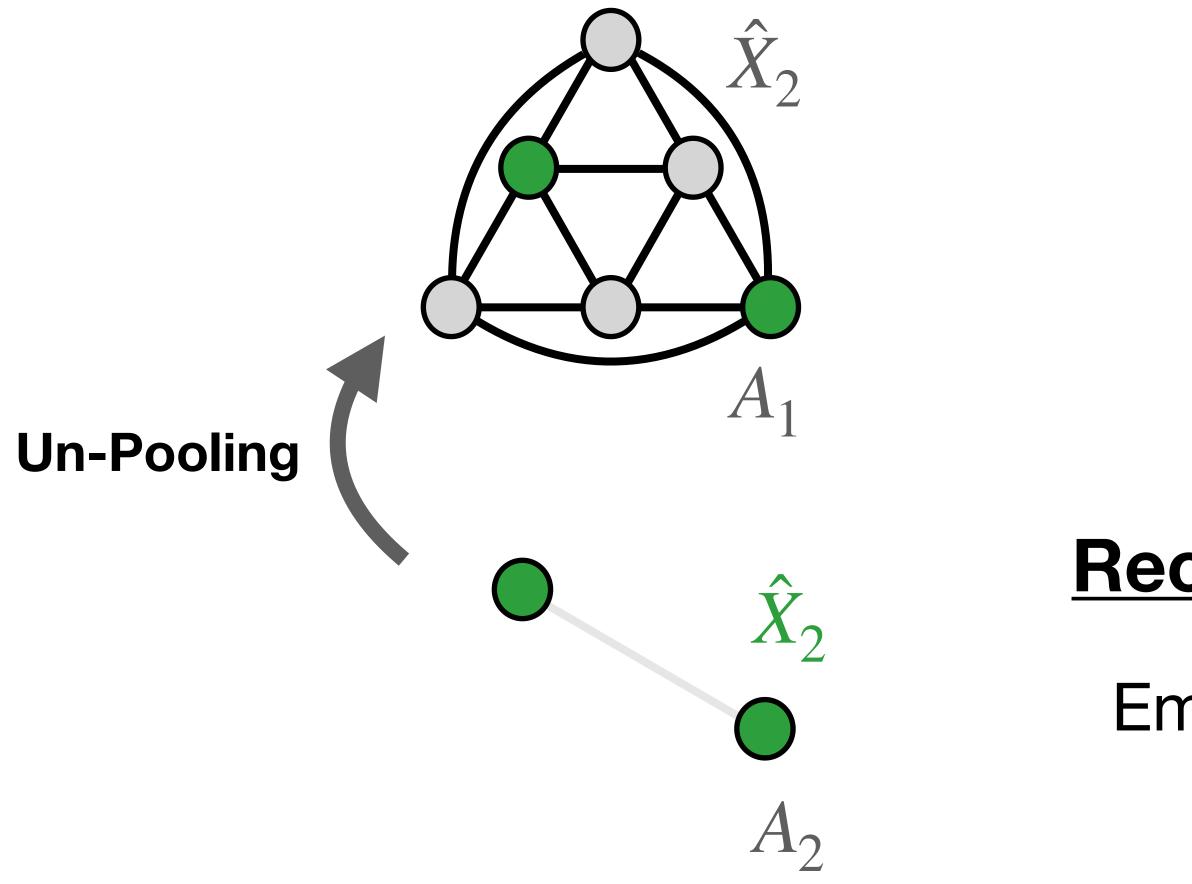
Decoding Dense Layer







## Decoding

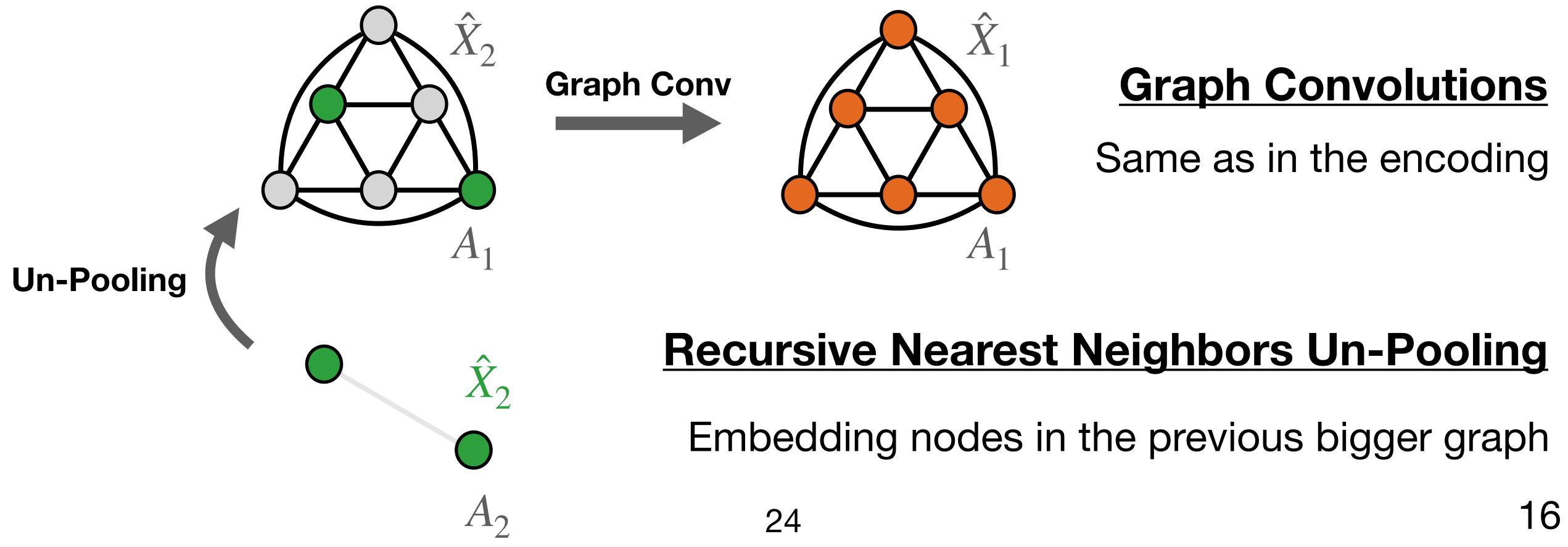


### **Recursive Nearest Neighbors Un-Pooling**

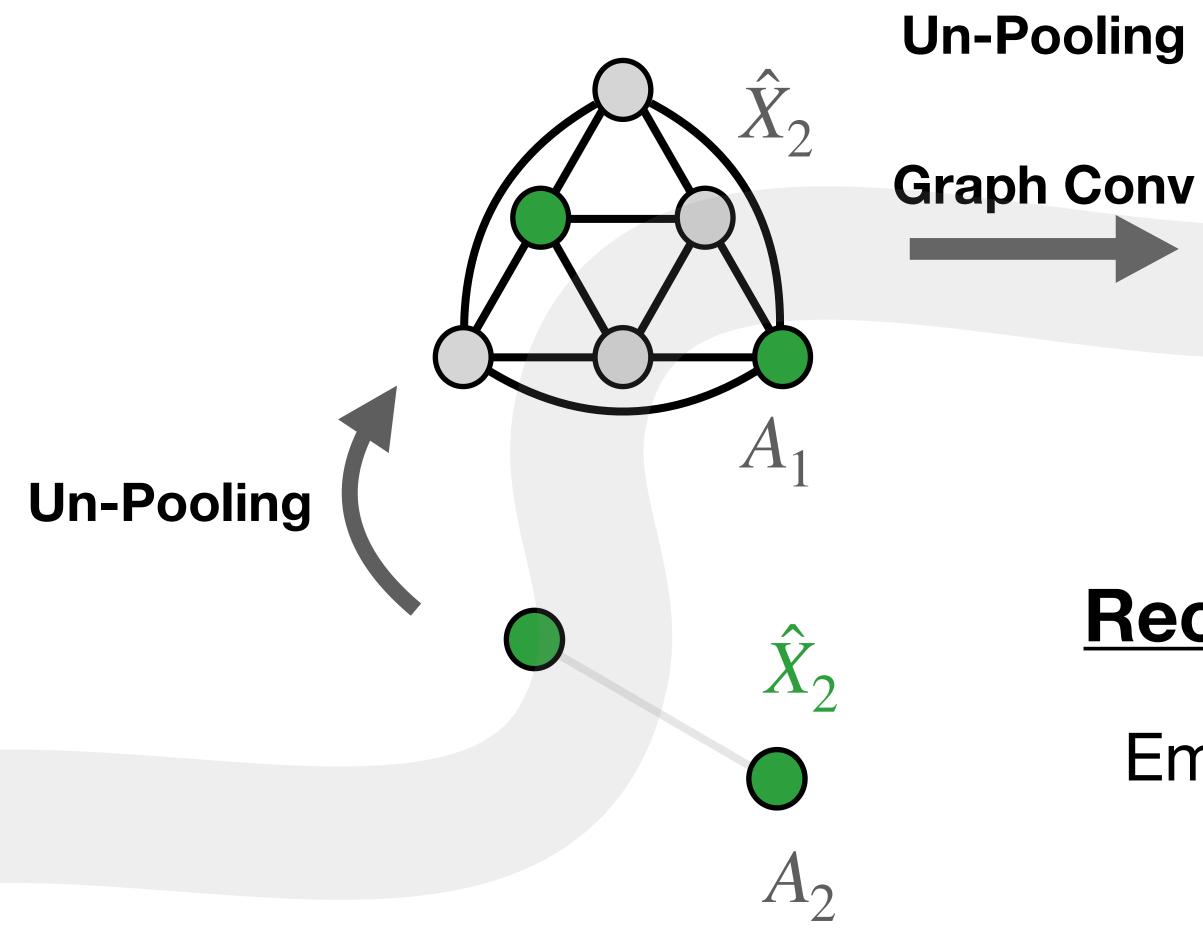
Embedding nodes in the previous bigger graph

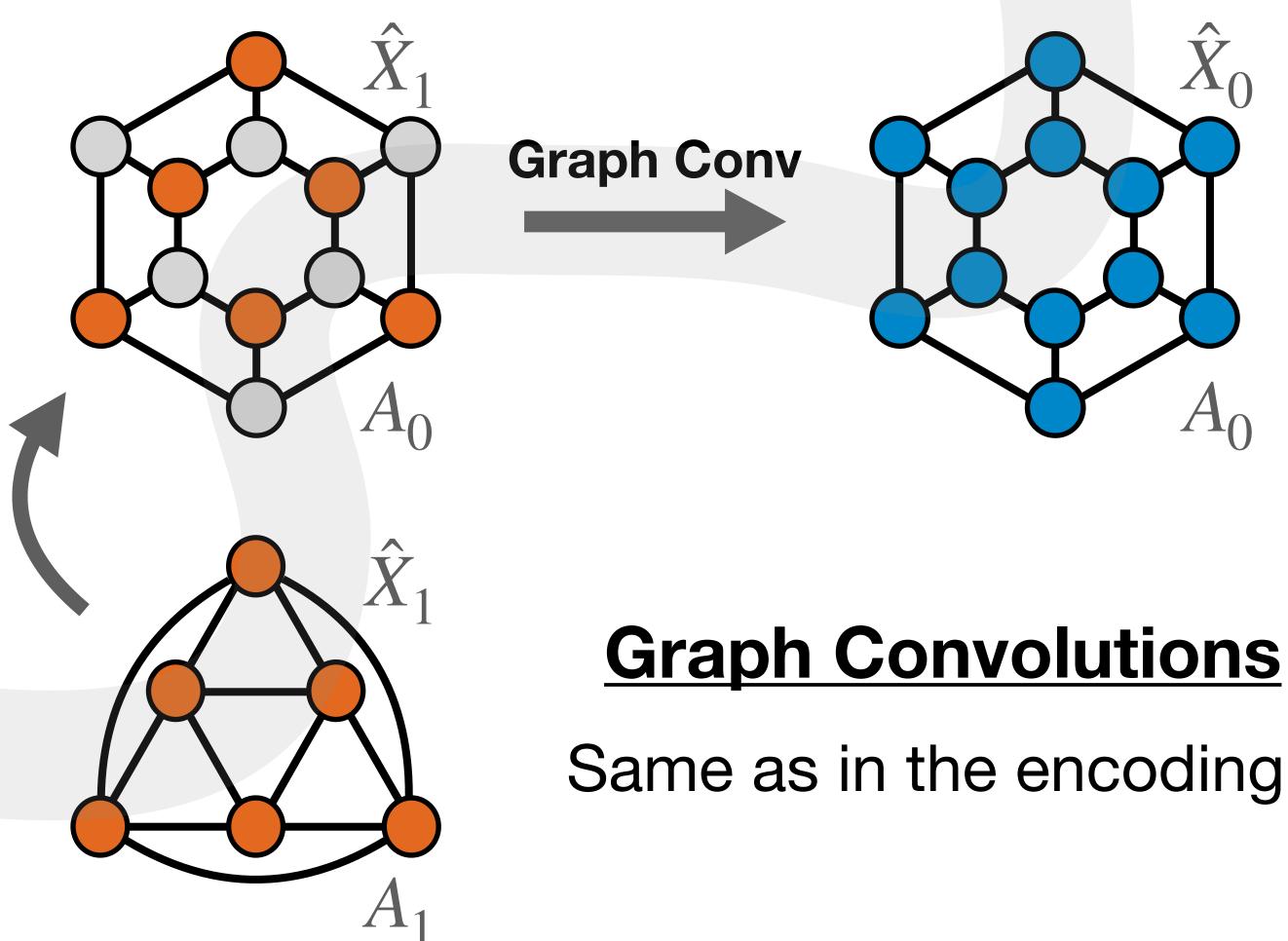


## Decoding



## Decoding





### **Recursive Nearest Neighbors Un-Pooling**

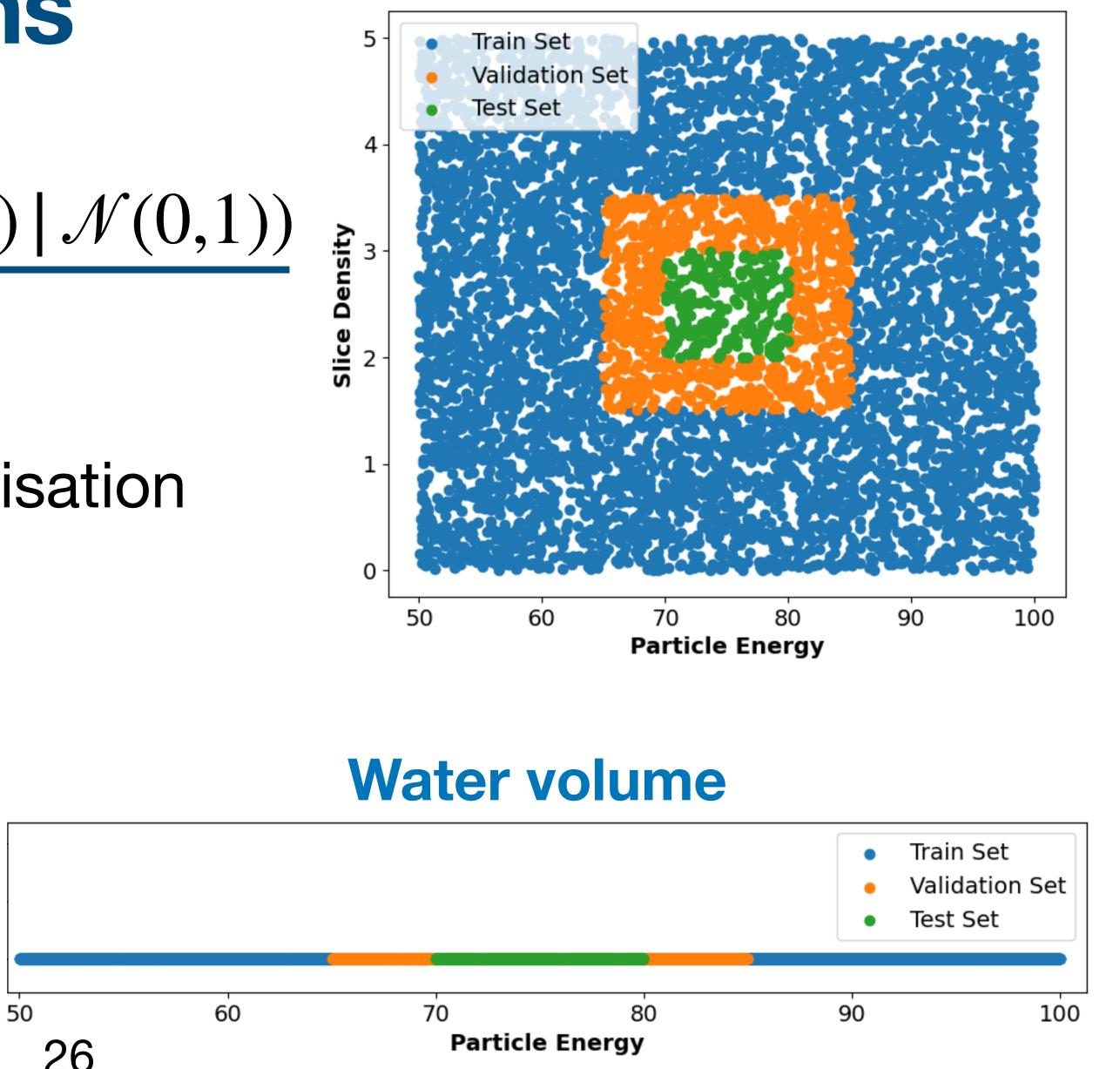
Embedding nodes in the previous bigger graph

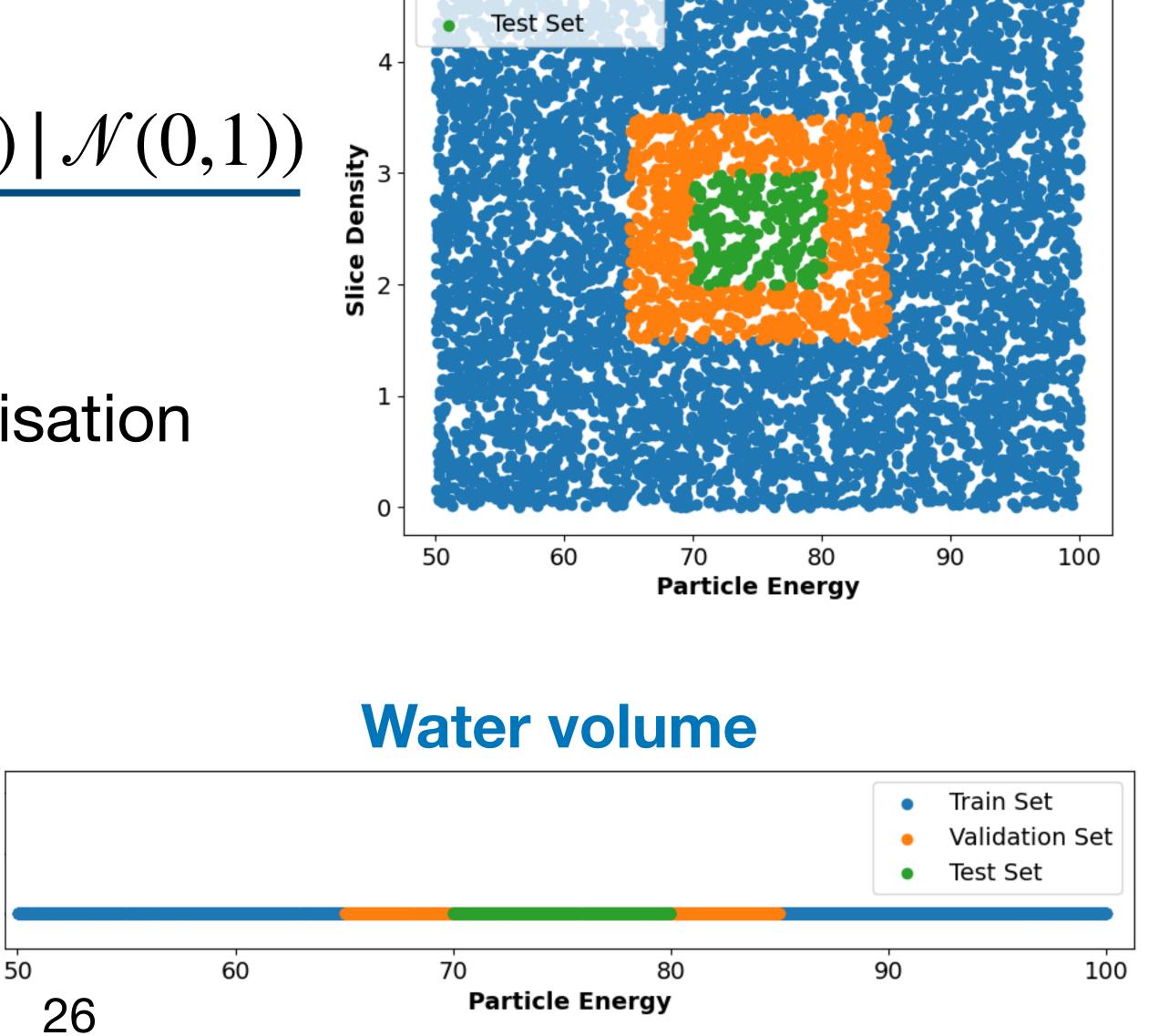


## **Training specifications** $Loss = BCE(X, \hat{X}) + KL(\mathcal{N}(\mu, \sigma) | \mathcal{N}(0, 1))$ Reconstruction Regularisation

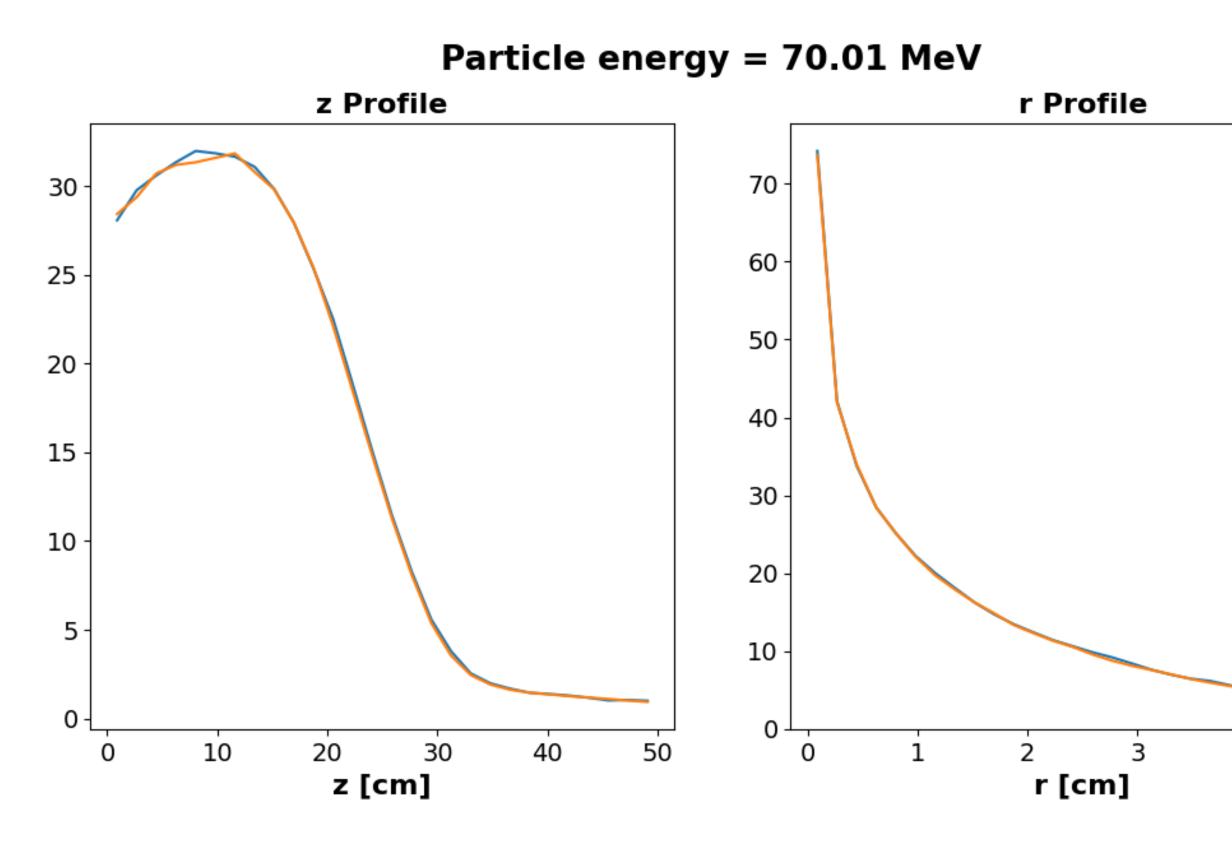
## Optimiser: Adam Learning rate: 0.003 Scheduler: exponential $\lambda = 0.9$

#### Water volume + slice





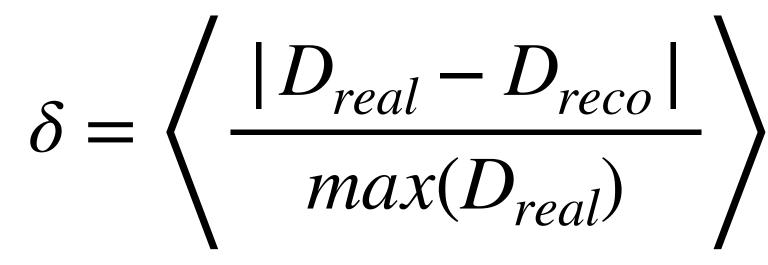
## **Results: Water Volume**



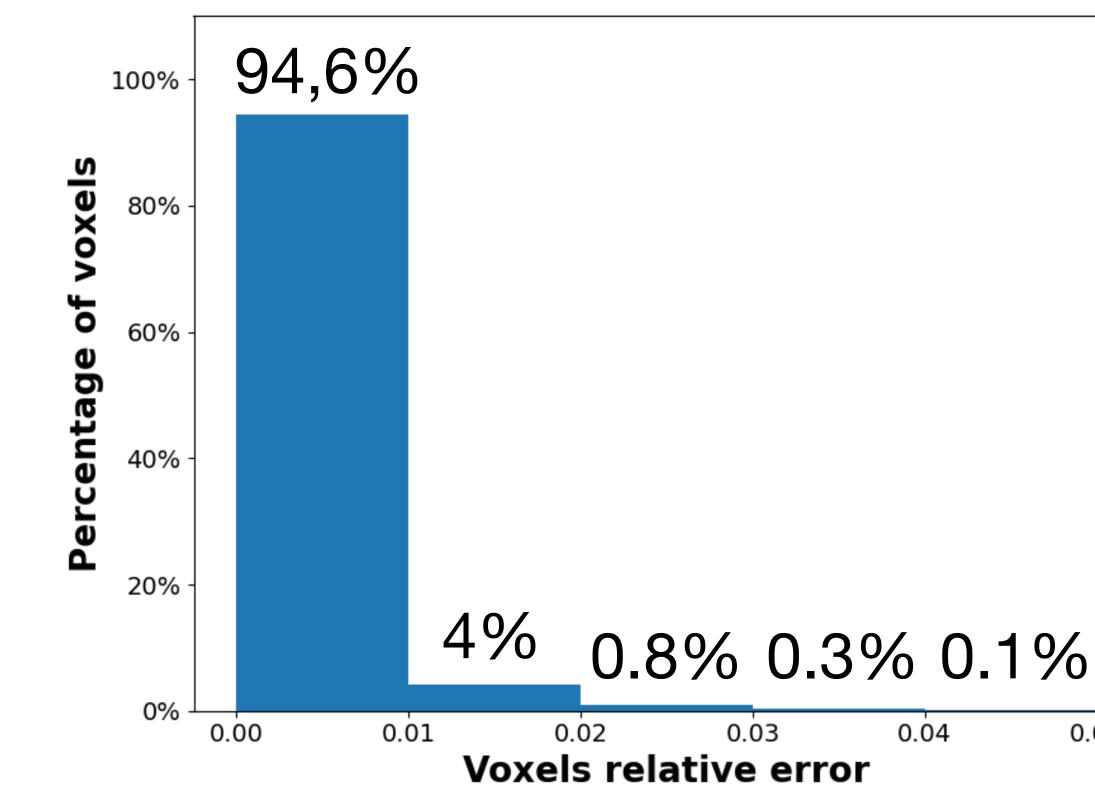
#### **Average results:**

- •95% on z profile
- •97% on r profile
- 98% on Energy conservation

#### **Voxel reconstruction:**



99,4% with  $\delta$  < 3%



27





## **Results: Water + Slice with variable density**

