
Lorenzo Arsini 

Fast emulation of deposited dose 
distributions by means of Deep 
Learning 

22/07/2022

L. Arsini1,2, B. Caccia3, A. Ciardiello2, A. De Gregorio1,2, R. Faccini1,2, G. Franciosini1,2,  
S. Giagu1,2, A. Muscato4, C. Mancini Terracciano1,2

1Department of Physics, University of Rome “La Sapienza”, Rome, Italy. 2INFN, Section of Rome, Rome, Italy 
3Istituto Superiore di Sanità, Rome, Italy 4Scuola post-laurea in Fisica Medica,  University of Rome “La Sapienza”, Rome, Italy

IV Geant4 International User Conference at the 
physics-medicine-biology frontier

1



Treatment plan optimization
Choice of angles, energies and 

intensities of the beamlets

Fit dose medical prescription

Energy optimisation   Fluency optimisation

to

Traditional sequential algorithms

2 steps

Room for improvement

Now:
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Today Tomorrow
FLASH radiotherapyVMAT  

Volumetric Modulated Arc Therapy

Opportunity to choose entry angle from continuous 

Sub-optimal optimisation:

• New angles added in steps

• Trade off between quality 

and time

Complex optimisation! 

Clinical unmet need for Treatment 
Planning System (TPS)

Opportunity to choose entry angle from continuous 
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Complex optimisation! 



Our Goal

Optimised 

treatment plan

CT scan

Organs’ density

Prescribed dose

DL 
algorithm

Writing the Dose to each 
organ as a function of 

beam parameters 

Energy Deposition Emulation Treatment Plan Optimisation
2 Phases

Deep Neural Network 
generative model

Emulated energy 
deposition distributions

with starting with
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Energy Deposition Emulation
• Simulation of energy deposition of electrons 

passing through matter, using Geant4


• 2 Geometry settings:


1. Water volume


2. Water volume + slice with variable 
density   


• In all cases 


• Data collected in a cylindrical scorer made 
up by 28 x 28 x 28 voxels in r,  and z

d ∈ [0, 5] g/cm3

E0 ∈ [50, 100] MeV

θ
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Cylindrical shape

Two main advantages:


• Reduce complexity without loss 
of generalisation: the cylinder 
follows the beam


• More precision near the beamline
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Variational Auto Encoder (VAE)

• Encoding and Decoding 
done with Graph layers

• Generative Algorithm
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Z
μ

σ

Graph Conv

Graph ConvGraph Conv

Graph Conv

Un-Pooling

Un-Pooling

Pooling

Pooling

ReNN Graph VAE

Encoding Decoding

Sampling
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Results
Water Volume

Water Volume + Slice

Water 5% 3% 2% 99.4%

Water + 
Slice 7% 4% 2% 98.4%

δ = ⟨ |Dreal − Dreco |
max(Dreal) ⟩

εr εEεz δ < 3 %

• Energy profiles


• Voxel reconstruction
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Latent Space: Water Volume

• In this simple case:

z is linearly correlated with Particle Energy

Sampling from Latent Space

=


Generating according to beam parameters 
(and more)

• In more complex cases:

increase latent space dimensionality

latent space conditioning

Latent Space in 1 dimension
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Latent Space: Water + Slice with variable density 

Latent Space in 2 dimensions

 and  highly correlated with:

Particle Energy

Slice’s density

μ1 μ2

The Network recognizes essential 
parameters in the simulation 
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Generation time 

Physical

Parameters Latent Space Generated


Dose Distribution
Predictor Decoder

Geant4 
10’000 primaries Graph VAE

Generation time 
(CPU) 82 s 0.02 s

Further advantages of Deep Learning approach:

• Generation time is independent of number of primaries

• Generation time can be further reduced using GPUs

Up to x  
faster than MC

106
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Conclusions

• Increasing the complexity of the medium

• Phase 2: optimisation of treatment plan

Next steps:

This was a proof-of-concept
Deep Learning can have a huge 
impact on today’s and future’s 

Radiotherapy

Today Better and faster optimization for VMAT

Tomorrow Optimized treatments with FLASH therapy
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Thank you for your attention!
Clinical unmet need for FLASH e- TPS and for better and faster 
way to optimize VMAT treatment plans

Potential huge impact on today’s and future’s Radiotherapy

Our Graph VAE emulates well dose distributions:


• Encoding and Decoding with graph layers


• Nearest Neighbours Pooling

Generation is >1000x faster than Geant4 

For any further information: lorenzo.arsini@uniroma1.it14

mailto:lorenzo.arsini@uniroma1.it


Outline

• Clinical unmet demand for TPS for VMAT and FLASH e- 


• Generative Deep Learning approach


• Dataset


• Architecture: Graph Encoding and Decoding


• Results


• Perpectives
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Radiotherapy
• Globally, 18 million cases of cancer diagnosed in 2020


• Approximately 50% of all cancer patients should receive radiation

https://www.wcrf.org/cancer-trends/worldwide-cancer-data/

Delaney, G., Jacob, S., Featherstone, C. and Barton, M. (2005), The role of radiotherapy in cancer treatment. Cancer, 104: 1129-1137. https://doi.org/10.1002/cncr.21324

Today 99.9% of treatments are done with photons

PhotonTherapy HadronTherapy

Equipments ~15.000 ~100
Centers ~7.600 ~100

Countries 156 20
References:

https://dirac.iaea.org 16

https://doi.org/10.1002/cncr.21324


VMAT: Volumetric Modulated Arc Therapy

• Sophisticated therapy with photons used worldwide


• Opportunity to choose entry angle from continuous of 360°

BUT STILL Sub-optimal optimisation:

• New angles added in 
steps


• Trade off between 
quality and time

Current Radiotherapy

Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008 Jan;35(1):310-7. doi: 10.1118/1.2818738. PMID: 18293586.17



Clinical unmet need for Treatment Planning System (TPS)

FLASH radiotherapy

Best candidates for it are 
electrons, in particular VHEE

Future perspectives

Opportunity to choose gantry from 
the entire solid angle
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EncodingGraph Conv

X0 X1

A0 A0

Graph Convolutions

x′ i = W1 xi + W2
1

N(i) ∑
j∈N(i)

xj
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Graph Conv

Pooling

X0 X1

A0

A1

A0

X1

Recursive Nearest Neighbors Pooling

Graph Convolutions

x′ i = W1 xi + W2
1

N(i) ∑
j∈N(i)

xj

A′ = A2Recursively drop nearest neighbours and choose: 

Encoding
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Graph Conv

Pooling

X0 X1

X2

A0

A1

A2

A0

X1

A1

X2Recursive Nearest Neighbors Pooling

Graph Convolutions
Graph Conv

Pooling
x′ i = W1 xi + W2

1
N(i) ∑

j∈N(i)

xj

A′ = A2Recursively drop nearest neighbours and choose: 

Encoding
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A2

X2 X̂2

Encoding

Dense Layer

Z

μ

σ

Decoding

Dense Layer

Flatten

Reparametrisation trick
Z = μ + ϵ ⋅ σ

Sampling
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A1

X̂2

Recursive Nearest Neighbors Un-Pooling

Embedding nodes in the previous bigger graph 

Un-Pooling

A2

X̂2

Decoding
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A1

X̂1

A1

X̂2
Graph Conv

Recursive Nearest Neighbors Un-Pooling

Graph Convolutions

Embedding nodes in the previous bigger graph 

Un-Pooling

A2

X̂2

Same as in the encoding

Decoding
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X̂0X̂1

A0

A1

A0

X̂1

A1

X̂2
Graph Conv

Un-Pooling

Graph Conv

Recursive Nearest Neighbors Un-Pooling

Graph Convolutions

Embedding nodes in the previous bigger graph 

Un-Pooling

A2

X̂2

Same as in the encoding

Decoding
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Training specifications

Optimiser:   Adam

Learning rate:  0.003


Scheduler:  exponential λ = 0.9

Water volume

Water volume + slice

Loss = BCE(X, X̂) + KL(𝒩(μ, σ) |𝒩(0,1))

Reconstruction Regularisation
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Results: Water Volume

Average results:
•95% on z profile

•97% on r profile

•98% on Energy conservation

94,6%

4% 0.8% 0.3% 0.1%

Voxel reconstruction:

99,4% with  < 3%δ

δ = ⟨ |Dreal − Dreco |
max(Dreal) ⟩
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Results: Water + Slice with variable density 

91,6%

5% 1.8% 0.8% 0.4%

Average results:
•93% on z profile

•96% on r profile

•98% on Energy conservation

Voxel reconstruction:

98,4% with  < 3%δ
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