Toward a generic approach for dose distribution recovery by using Deep Learning and GPU-based Geant4 simulations

Asma TOUIL, Hong Phuong Dang, Didier. Benoit, Dimitris Visvikis, and Julien Bert

LaTIM – INSERM UMR 1101

Brest, France

23-26 October 2022

6 Geant4

Motivations

MC simulations & Temporal complexity

Features	Values	
Number of particules	5.10 ⁵	5.10 ⁸
Uncertainty average	60±30%	2±0.7%
Simulation time (Gate) – CPU*	40s	~10h

*CPU: CPU core Intel Xeon W-2223 3,6GHz

MC Denoising

Previous studies (1)

Standard approaches: Filtering based

[1] Y. Yuan, L. Yu, and Q. Fang, "Denoising in Monte Carlo Photon Transport Simulations Using GPU-accelerated Adaptive Non-Local Mean Filter," in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS)

23-26 October 2022

MC Denoising

Previous studies (2)

***** Recent approaches: *Deep Learning based*

Sensitivity to the MC setup configurations !

[2] S. Martinot et al., "High-Particle Simulation of Monte-Carlo Dose Distribution with 3D ConvLSTMs," in MICCAI 2021.

[3] T. Bai et al., "Deep dose plugin: towards real-time Monte Carlo dose calculation through a deep learning-based denoising algorithm," Mach. Learn. Sci. Technol., vol. 2, no. 2, p. 025033, 2021.

[4] van Dijk, Robert HW, et al. "A novel multichannel deep learning model for fast denoising of Monte Carlo dose calculations: preclinical applications." Physics in Medicine & Biology 67.16, 2022.

6 Geant4

23-26 October 2022

• Our preliminary proposed approach

Aims & Processing

✤ Aims

- Extreme case (highly undersampled)
- Complex distribution (heterogeneity)
- \circ Inpainting / denoising
- Generic approach (reduce the sensitivity to configuration setups)

✤ MC simulations (GGEMS*)

- Geant4 GPU-based MC simulation
- NVIDIA GTX3090 card
- 82 CT scans (abdominal)
- Cone-beam photon source
- 5x10⁵ photons (LS)
- 5x10⁸ photons (HS)

- Different simulation setups :
 - Beam aperture (°) in [0,5, 4,99]
 - Angulation view (°) in [-180, +180]
 - Energy values (keV) in [50, 999]

*https://ggems.fr, Bert et al. Geant4-based Monte Carlo simulations on GPU for medical applications Phys Med Biol 58 5593–611, 2013

Our preliminary proposed approach

Classical deep-based approach

* MC-UNet: Multi-channel & Unet based architecture

Training dataset

- Arbitrary number of 2D slices for each patient (CT & Dose maps)
- Normalized intensity ([0,1])
- Dataset (DS) :
 - 10000 samples with energy values in [50, 999] (keV)
 - shuffled samples (2D LS, 2D HS, 2D CT)
 - 80% training, 20% validation

Training

- Adam optimizer, 10-4 learning rate,
- Training:
 - NVIDIA GPU GeForce GTX 1080
 - 200 epochs, 10 batches (6hours)

Evaluation

- Using the 20% validation samples
- MSE and absolute error

• Our preliminary proposed approach

MC-Unet performances (1)

No sensitivity to apertures, beam angles, ...

Same aperture

6 Geant4

23-26 October 2022

6

• Our preliminary proposed approach

MC-Unet performances (2)

6 Geant4

Our preliminary proposed approach

Proposed architecture

CMC-UNet: Multi-channel & Energy conditioned & Unet based architecture

Training dataset

- Arbitrary number of 2D slices for each patient (CT & Dose maps)
- Normalized intensity ([0,1])
- Dataset (**DS**) :
 - 10000 samples with energy values in [50, 999] (keV)
 - shuffled samples (2D LS, 2D HS, 2D CT)
 - 80% training, 20% validation

Training

- Adam optimizer, 10-4 learning rate,
- Training:
 - NVIDIA GPU GeForce GTX 1080
 - 200 epochs, 10 batches (15hours)

Evaluation

- Using the 20% validation samples
- SSIM and absolute error

Preliminary results

CMC-UNet vs MC-UNet

6 GEANT4

23-26 October 2022

Conclusions

✤ Aims

- Extreme case (highly undersampled)
- Complex distribution (heterogeneity)
- Inpainting / denoising
- Generic approach Improve abs. err. values

Improve model's genericity

- Encode other information to the model (improve the absolute error values)
- Train for different CT volumes (head, neck, ...)

Future work

- Compare with other works (ex. [4] Van Dijk et al.) and standard filtering methods
- Test for different medical applications

Toward a generic approach for dose distribution recovery by using Deep Learning and GPU-based Geant4 simulations

Asma TOUIL, Hong Phuong Dang, Didier. Benoit, Dimitris Visvikis, and Julien Bert

LaTIM – INSERM UMR 1101

Brest, France

23-26 October 2022

6 Geant4