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Motivations

MC simulations & Temporal complexity

Low sampling (LS) Vs High sampling (HS)
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Features ‘ Values
Number of particules 5.10° 5.108
Uncertainty average 60£30% 2+0.7%
Simulation time (Gate) — CPU* 40s ~10h

*CPU: CPU core Intel Xeon W-2223 3,6GHz
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MC Denoising

Previous studies (1)

X/

«» Standard approaches: Filtering based
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Fig. 1 GPU ANLM filter algorithm workflow diagram. All memory operations are shaded in orange; the
steps executed in the GPU are shaded in light-blue.
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Fig. 3 Comparisons between fluence cross-sectional plots before and after denoising in three bench-
marks: (c and d) a homogeneous domain (B1), (e and ) a cubic domain with an absorbing inclusion (B2)
or (g and h) a reflective inclusion (B3). In each pair, we show the fluence maps before (c, e, and g) and
after (d, f, and h) the denoising filter. For visual comparison, we also show the plots for running 10°
photons for the homogeneous case in (a) and its denoised version in (b). All fluence plots are
shown in log ;o scale.
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[1] Y. Yuan, L. Yu, and Q. Fang, "Denoising in Monte Carlo Photon Transport Simulations Using GPU-accelerated Adaptive Non-Local Mean Filter,"
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Fig. 2 GPU thread and memory mapping: (a) image-to-thread space 1
mapping and (b) image subvolumes loaded to the shared memory. In :
(@), an N, x Ny, x N, image volume is partitioned into blocks of size 1
Tx % Ty x T, with each block filtered by a thread block*® of the same !
size and each voxel in the block updated by a single thread. In (b), 1
filtering a single block requires to load not only the block-mapped 1
voxels (light-blue) but also the voxels within a margin, referred to :
as the “aprons,” determined by the radii of the patch (rp) and search 1
area (ry). :
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Fig. 5 Ci the sil fluence images
with 108 photons, in coronal views, in a 19.5-year-old brain atlas
(a) before and (b) after denoising. The fluence is shown in logy,
scale.

in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS)



MC Denoising

Previous studies (2)

+* Recent approaches: Deep Learning based
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Fig. 1. Proposed architectures and inner structure of the 3D ConvL.STM. The number
of output channels after cach block appears above or below the layers” output volumes.
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Figure 1. Network architecture illustration. There are four major components: multichannel input, backbone, feature pyramid
and prediction head. The multichannel input is consisting of 2 voxel unshuffle operator that can effectively reduce the feature map
size. In the backbone and feature pyramid, all the 3D volumetric convolution operators are decomposed into a 2D axial

convolution operator and a 1D slice convolution overator. The prediction head contains another decomnosed convolutional layer
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Sensitivity to the MC setup configurations !

[2] S. Martinot et al., “High-Particle Simulation of Monte-Carlo Dose Distribution with 3D ConvLSTMs,” in MICCAI 2021.
[3] T. Bai et al., “Deep dose plugin: towards real-time Monte Carlo dose calculation through a deep learning-based denoising algorithm,” Mach. Learn. Sci. Technol., vol. 2, no. 2, p. 025033, 2021.
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[4] van Dijk, Robert HW, et al. "A novel multichannel deep learning model for fast denoising of Monte Carlo dose calculations: preclinical applications." Physics in Medicine & Biology 67.16, 2022.
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Our preliminary proposed approach

Aims & Processing

< Aims + MC simulations (GGEMS*)
=  Geant4 GPU-based MC simulation

. NVIDIA GTX3090 card

= 82 CT scans (abdominal)

=  Cone-beam photon source
5x10° photons (LS)

= 5x108 photons (HS)
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=  Different simulation setups :
= Beam aperture (°)in [0,5, 4,99]
Extreme case (highly undersampled) = Angulation view (°) in [-180, +180]
Complex distribution (heterogeneity) =  Energy values (keV) in [50, 999]
Inpainting / denoising
Generic approach (reduce the sensitivity to
configuration setups)

O O O O

) https://ggems.fr, Bert et al. Geant4-based Monte Carlo simulations on GPU for medical applications Phys Med Biol 58 5593-611, 2013
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Our preliminary proposed approach

Classical deep-based approach

* MC-UNet: Multi-channel & Unet based architecture

l:] Strided conv.
I:] Conv.

|:] Strided trranspose conv.

«~p Copy & concatenate

% Training dataset % Training < Evaluation
*  Arbitrary number of 2D slices for each patient (CT & Dose maps) = Adam optimizer, 10-4 learning rate, *  Using the 20% validation samples
*  Normalized intensity ([0,1]) =  MSE and absolute error
=  Dataset (DS): *  Training:
= 10000 samples with energy values in [50, 999] (keV) =  NVIDIA GPU GeForce GTX 1080
*  shuffled samples (2D LS, 2D HS, 2D CT) = 200 epochs, 10 batches (6hours)

= 80% training, 20% validation
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Our preliminary proposed approach

MC-Unet performances (1)

No sensitivity to apertures, beam angles. ... V/

= Same angle = Same aperture
E =673, apert. = 3,03 MSE = 7,7x10-4

E =799, apert. = 1,72 MSE = 4,3x10-4

1R

Input (LS) Ground Truth (HS) MC-UNet prediction MC-UNet error map

E =450, angle = -151

S |

MSE = 2,4x10-4

E =836, angle = 10 MSE = 3,5x10-4

=

Input (LS) Ground Truth (HS) MC-UNet prediction MC-UNet error map

23-26 October 2022




Our preliminary proposed approach

MC-Unet performances (2)

Issue due to the diverse energy values : Depth dose curve ! x
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Our preliminary proposed approach

Proposed architecture

+* CMC-UNet: Multi-channel & Energy conditioned & Unet based architecture

7

+* Training dataset

| I:] Strided conv. DConv. EI Strided trranspose conv. —p Copy & concatenate |

= Arbitrary number of 2D slices for each patient (CT &

Dose maps)

=  Normalized intensity ([0,1])
=  Dataset (DS):
= 10000 samples with energy values in [50,
999] (keV)
=  shuffled samples (2D LS, 2D HS, 2D CT)
= 80% training, 20% validation
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p 2561
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%+ Training

=  Adam optimizer, 10-4 learning rate,
=  Training:
=  NVIDIA GPU GeForce GTX 1080

1

I

:

! = 200 epochs, 10 batches (15hours)
A =H-Ek
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+* Evaluation
= Using the 20% validation samples
....................... =  SSIM and absolute error
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Preliminary results

CMC-UNet vs MC-UNet

MSE=9,5x107 MSE=4,8x103
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Conclusions

< Aims
o Extreme case (highly undersampled)
o Complex distribution (heterogeneity)
o Inpainting / denoising
o Generic approach — Improve abs. err. values

K/

< Improve model’s genericity

=  Encode other information to the model (improve the absolute error values)
= Train for different CT volumes (head, neck, ...)
+* Future work
=  Compare with other works (ex. [4] Van Dijk et al.) and standard filtering methods
= Test for different medical applications
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