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Background: Monte Carlo Simulations (MCS) play 

a key role in medical image applications, especially 

in the field of radiotherapy and dosimetry 

distributions. The main drawback of MCS is the 

need for a long computational time to obtain a result 

with a sufficient statistic. Recently, many Deep 

Learning (DL) systems have shown a significant 

progress to improve MC simulation speeds and 

qualities. For example, several DL-based approaches 

have been proposed to improve the statistical quality 

of MCS starting from the low sampling dose 

distributions [1, 2]. Despite their effectiveness, their 

performance is highly dependent on the setup of the 

MC simulation. Indeed, they are learned from maps 

of dose data sets generated from the same 

configuration (source energy characteristics, 

anatomical region, etc).  

Materials and Methods: The main goal of this 

work is to propose a generic method which is able to 

generate dose maps with higher statistical quality 

from lower one, independently of their types and 

configurations. The used network architecture is 

based on the U-Net [3] structure that have seen 

significant efficiency in the medical imaging field 

over the last years [4]. Here, our preliminary work 

consists in considering both the patient’s anatomy 

(CT) and the low sampling dose map as input data 

for the network. We start our work by building two 

training datasets to be used for the learning stage. 

They are generated from a publicly available dataset 

of 82 CT scans [5]. A voxelized phantom and a 

photon cone-beam source are placed behind the 

patient. To perform different MC simulation setups, 

randomly sampled energy, beam aperture, beam 

position and viewing angle values were used. The 

beam aperture and the viewing angle sampled 

values, for the two generated datasets, were 

uniformly distributed over the interval of [0.5, 4.99] 

and [-180, +180] degrees, respectively. However, 

the energy sampled values were uniformly 

distributed over the interval [50, 999] keV, which 

leads to medical and also therapy applications, for 

the first dataset (called Dataset1) and [50, 150] keV 

for the second dataset (called Dataset2). Each of the 

above-mentioned setup simulations was performed 

twice, on the same CT, with two different levels of 

statistical precision: one with 5x105 photons (low 

sampling) and one with 5x108 (high sampling). The 

Open-Source GPU-based Geant4 MC platform 

GGEMS [6] were used to perform the different 

simulations. The GPU card used for the MC 

simulations was a NVIDIA GTX3090. A total of 

10000 and 1534 pairs of 2D image samples were 

generated for Dataset1 and Dataset2, respectively. 

Each of them was divided into two subsets: a 

training subset with 80% of the samples and a 

validation subset with 20% of the samples. We 

adopted the Adam algorithm with a learning rate of 

10-4 for optimization and the Mean Squared Error 

(MSE) as the loss function. The U-Net training 

process learns to predict the high sampling dose 

maps, with their fine details, from the low sampling 

dose maps and the corresponding CT slices 

considered as inputs and it was trained twice. The 

first training model (called System1) was performed 

on Dataset1, for 200 epochs and 10 batches. 

However, the second training model (called 

System2) was performed on Dataset2, for 500 

epochs and 10 batches. The two systems were 

trained on the same GPU NVIDIA GeForce GTX 

1080 card.  

Preliminary results: The running time for the low 

and high sampling MC simulations was about 0.6 ± 

0.1s and 23±1s with a mean uncertainty of 2±0.7% 

and 60±30%, respectively. The training stages took 

about 6 and 1.5 hours for the System1 and System2, 

respectively. 

Figure 1 shows the result, using the System1, for two 

low sampling dose maps with different energy 

values: 92 keV (Sample1) and 690 keV (Sample2). 

The absolute error maps prove that this trained 

model was able to improve the overall low sampling 

statistical quality maps. However, the fine details in 

the background were not properly recovered for the 

sample with the low energy value (Sample1). The 

MSE values for these samples were 1.8x10-4 for 

Sample1 and 8.6x10-3 for Sample2.  

Figure 2 shows the results obtained by applying the 

two systems (System1 and System2) for the same 

sample (Sample2). The obtained absolute error map 

obtained by System2, compared to that obtained by 

System1 shows an improvement in terms of 

recovering the fine details, in the generated dose 

map, and thus leads to a result statistically 

equivalent to a higher sampling dose map. The MSE 

value for this case, with the learned System2, was 

9.2x10-4 compared to the previous 8.6x10-3 value 

obtained with System1. 

Discussion & Conclusions: These preliminary 

results are promising. They show the ability to 

enhance the statistical MC simulation speeds and 

qualities. However, they highlight the impact of 

considering a large of energy values’ interval in 

decreasing the model’s performances. To handle 

with this encountered problem of unbalanced 

dataset, our main idea, which is our work in 

progress, consists of encoding the energy 

information to the trained model. Such strategies 

avoid increasing the computing time’s problem with 

additional training and condition the model to 



 

accurately recover the fine details even with small 

energy values. 

 
Figure 1: A representative result for two low 

sampling MCS, with different energy values, from 

the validation set. The rows, from top to bottom: the 

low sampling MCS (network input), the high 

sampling MCS (Ground Truth), the predictions of 

the network, and the absolute error maps between 

the Ground Truth and the network prediction. 
 

 
Figure 2: Representative result from the validation 

set, using the two trained systems (first line for 

System1 and second line for System2). The rows, 

from top to bottom: the low sampling MCS (network 

input), the high sampling MCS (Ground Truth), the 

predictions of the network, and the absolute error 

maps between the Ground Truth and the network 

prediction. 
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