

A Geant4 tool for the simulation of contrast enhanced dualenergy mammography – Study of polychromatic versus quasimonochromatic X-ray spectra and different contrast agents

<u>Gianfranco Paternò</u>¹, Paolo Cardarelli¹, Angelo Taibi^{1,2}

¹ INFN division of Ferrara ² University of Ferrara, department of Physics and Earth Sciences

https://medical-physics.unife.it

Gianfranco Paternò IV Geant4 International User Conference, Naples, 24-26 October 2022

Outline

- Overview of X-ray diagnostic techniques for breast.
- A Geant4 tool for the simulation of Contrast Enhanced Dual-Energy (Subtraction) Mammography (CEDEM/CESM).
- CESM with quasi-monochromatic radiation vs the one based on conventional polychromatic sources.
- CESM with iodine contrast media vs the one based on gadolinium.

Diagnostic techniques for breast

Breast cancer is the most commonly diagnosed in female subjects (28% of cancers, 16% of deaths for cancer) -> early detection -> **first level screening (DM**, US)

Second level techniques: 3D techniques (MRI, **DBT**, **BCT**) or contrast enhanced dual energy mammography (**CESM**) to avoid the overlap of tissues surrounding the lesion

Examples of BCT acquired by J.M. Boone

CESM

Weighted subtraction of 2 images acquired with spectra straddling the K-edge of a contrast medium (CM) injected to the patient \rightarrow enhancement of structures perfused with CM.

Dual energy equations, in principle, are valid for monochromatic spectra and two materials, but are used also in **more general conditions, such as in CESM**, which is carried out using conventional polychromatic X-ray sources and involves more than 2 materials \rightarrow **some issues** \rightarrow **the aim of this study is to investigate other X-ray sources and CM to increase SNR and/or reduce MGD.**

CESM: analytical signal reconstruction with Gaussian spectra \rightarrow optimal energy separation (ΔE)

3 materials case: adipose, glandular, iodine CM (t_T = 5 cm, G=30%, expected S = 5 x 10⁻³ g cm⁻², detail 5 mm diam)

The mammo code

- A Geant4 application, *mammo*, has been developed.
- It allows us to simulate mammographic projections of both geometric and personalized voxel phantoms (it incorporates part of the code developed for the former INFN-AGATA project for Virtual Clinical Trials).
- Various geometric configurations (compressed or pendant breast), X-ray imaging modalities (DM, DBT, BCT, CESM) and sources (Gaussian or polychromatic beams, ICS) can be considered.
- The geometry (thorax, phantom, compression paddle, grid, detector, slits) and the associated materials can be set through **custom commands** (macro files).
- The photons impinging on the **detector** and the **energy deposited**, as well as the **phantom dose** are scored through the SteppingAction and a custom (voxel) scorer class.

Available at https://medical-physics.unife.it/downloads/geant4

Geometric phantom (used in this study about CESM)

X-ray source: Hologic Selenia Dimension (W anode, Rh filter) at 25 kV

10¹¹ simulated events

Project proposal for INFN CSN5 - Bando n. 2118

Advanced GeAnt4-based platform for virtual clinical Trials in X-ray breAst imaging

Settings for our study on CESM with mammo

- Phantom:
- → Semi-cylindrical (5 cm thick, 16 cm diam)
- Materials: adipose tissue, spheres of glandular tissue (G = 30%), μcalc (HA, 0.25 - 2 mm diam), skin (1.45 mm ICRU skin + 3.55 mm adipose)
- Spherical detail (5 cm diam) filled with CM (5 mg/ml of I or Gd)
- **Detector**: 20x20 cm², pixel area 0.3x0.3 mm², ideal photon counting and Edep scored in a 0.4 mm thick Csl layer.
- Focused **anti-scatter grid** (3 mm Pb) considered or not.
- **Physics list**: EM standard_option4 , 0.1 mm cuts, no e- tracking.

- It has been used the **Dual-energy reconstruction algorithm for 3 materials** (see, for instance, A. Contillo et al, Medical Physics 43.6 Part1 (2016): 3080-3089).
- 30 (45.5) keV and 36 (54.5) keV are the mean energies of the Gaussian spectra (5% BW) for LE and HE exposure, respectively, in the case of I (Gd) contrast medium.
- Used **polychromatic sources** are X-ray tube with W anode and proper filtration and voltage (see slide 4).
- 10¹⁰ photons impinging on the phantom (4.5x10⁴ ph/px → MGD ~ 0.02 mGy).

CESM: polychromatic vs quasi-monochromatic radiation (iodine CM)

Example of CES images obtained with *mammo*: case of **polychromatic source** (with grid).

Signal for the **iodinated detail** and **other metrics** were calculated in **4 cases** (see the table below)

Results (FoM=SNR²/MGD):

24/10/2022

R_{grid} = FoM_{grid}/FoM = 1.49 and 3.87 for Gaussian (G) and polychromatic spectra (P), respectively.

 $R_{G,P} = FoM_G/FoM_P = 4.34$ and 11.30 with and without grid, respectively.

CESM: iodine vs gadolinium (quasi-monochromatic beams)

Selection of the **mean energy of the X-ray beams** in the case of Gd as contrast agent (analytical calculation)

X-ray spectra	CM	grid	E [.] (keV)	E⁺ (keV)	S (mg/cm ²)	SNR	MGD (mGy)	FoM (mGy-1)
Gaussian (5%BW)	- I	no	30.0	36.0	3.00	67.22	0.0176	2.57E+05
Gaussian (5%BW)	Gd	no	45.5	54.5	2.49	27.4	0.0131	5.73E+04

Contrast images obtained with mammo

Conclusions

- A code has been developed in Geant4 for the simulation of mammographic projections using phantoms of various complexity and different sources.
- The use of quasi-monocromatic beams in CESM leads to typically double SNR at almost the same dose (FoM=SNR²/MGD > 4) with respect to CESM with conventional polychromatic spectra.
- **Iodine contrast medium** leads to FoM more than 4 time higher than those obtained with Gadolinium.