Calculation of organ-specific radiation quality factors for the radioprotection of astronauts on the Moon: a microdosimetric approach

M. J. Large ${ }^{1}$, J. W. Archer ${ }^{1}$, D. Bolst ${ }^{1}$, S. Peracchi ${ }^{2}$, A. B. Rosenfeld ${ }^{1}$ \& S. Guatelli ${ }^{1}$
${ }^{1}$ Centre for Medical Radiation Physics, University of Wollongong, NSW, Australia.
${ }^{2}$ Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia.

Background: Many international space agencies and organizations share a common goal of extended human missions to the Moon. Therefore, the development of a Geant4 application to recreate the radiation environment on the surface of the Moon for astronaut radioprotection studies is vital.
Material and Methods: The computational human phantoms outlined in publication 145 of the International Commission on Radiation Protection (ICRP) [1] are implemented in a lunar radiation environment simulated in Geant4. The composition of the lunar soil is defined using the data of Mesick et al.; based on LNPE lunar borehole data retrieved during the Apollo missions [2]. The phantoms are subject to incident galactic cosmic ray (GCR) particles generated from a large hemisphere encasing the lunar surface geometry. We record the lineal energy and microdosimetric radiation quality factor $Q(y)$ and dose equivalent within organs of interest for radioprotection studies.
Preliminary results: Here we present the daily absorbed dose and dose equivalent rates for astronauts on the surface of the moon. We provide a comparison between the dose equivalent calculated using the microdosimetric quality factor $\mathrm{Q}(\mathrm{y})$ with the more traditionally based Lineal Energy Transfer (LET) determination of the radiation quality factor.

Figure 1: Male ICRP145 Human Phantom as visualized in Geant4 above the lunar surface (grey) and subject to incident GCR protons (green tracks).
[1] ICRP Publication 145 (2020), Ann. ICRP 49(3).
[2] Mesick et al., Earth and Space Sci., 5, 324-338.

