Development of Geant4-DNA for atmosphere simulations

<u>F. Nicolanti</u>, B. Caccia, A. Cartoni, D.Emfietzoglou, R. Faccini, S. Incerti, I. Kyriakou, M. Satta, H. N. Tran, C. Mancini-Terracciano

Contact: francesca.nicolanti@uniroma1.it

lons in the atmosphere

What is the impact of cosmic rays and ions on atmospheric chemistry?

precipitation (Kniveton 2004)

aerosol formation (Shumilov et al. 1996 Mironova and Pudovkin 2005; Kazil et al. 2006)

ion-induced

nucleation

al. 2007)

cloud cover

2006)

Ozone deplation (Kniveton 2004)

- The predictivity of current climatological models is still incomplete.
- Many questions open: How many ions are produced? In what state? What spatial distribution? ٠

lons in the atmosphere

- Ions affect the atmospheric composition either destroying or producing neutral molecules by faster reactions
 - ion-molecule reaction rate up to 10 orders higher
- Even a small amount of substance can make a difference:
 - non-linear chemical system
- Spatial distribution of ions is extremely inhomogeneous

Production of dangerous greenhouse gases:

$$O_3^+ + N_2 \longrightarrow O_2^+ + N_2 O_2$$

F. Cacace et al. Angew. Chem. Int. Ed. Engl. 2001, 40, 1938

The connection of cosmic rays with ions and the climate parameters is a challenging topic.

CR induced Ionisation models

Monte-Carlo codes:

Oulu CRAC:CRII (CORSIKA+FLUKA)

Usoskin et al., J. Atm. Solar-Terr. Phys, (2004). Usoskin, Kovaltsov, J. Geophys. Res., (2006, 2010).

Bern model ATMOCOSMIC (GEANT-4)

Desorgher et al., Int. J. Mod. Phys. A, (2005) Scherer et al. Space Sci. Rev. (2006).

AtRIS (GEANT-4)

Banjac et al., JGR Space Physics (2018)

RUSCOSMICS

Maurchev et al., Bull. Russ. Acad. Sci. Phys. (2019)

Output of the models: average production rate of ion pairs (ions cm-3 s-1)

BUT...

• The interaction of low-energy secondary radiation with molecules are not included;

 They can not provide the exact concentration of the ions produced, their spatial distribution, and ionization state.

Geant4-DNA for atmosphere

The AIM:

Accurately describe the **amount and state of ionisation**, and the spatial distribution of ions produced by CR interaction in the atmosphere;

The HOW:

By **including in Geant4-DNA new models** for particle-impact interactions with relevant molecules for climatology

Under study:

• e- impact on N2 and O2

Next: CO₂, N₂O, O₃, CH₄,...

Geant4-DNA for atmosphere

690 km

Electron impact on N2, O2

1. Ionisation:

- Method: Relativistic Binary Encounter Bethe **RBEB** (Kim, 2000)
- Energy range: threshold 1 GeV
- EDCS for Molecular Orbital (4 Outer shells for N2, 5 outer shells for O2)

2. Elastic scattering:

- Method: Indipendent Atom Model (Mott and Massey 1965) calculated by means of the ELSEPA code**
 - spherical complex optical potential formalism
- Energy range: tens of eV 1 GeV
- Angular DCS

3. Electronic excitation: Work in progress

 probably different models will be used to cover the whole energy range and electronic states.

** "ELastic Scattering of Electrons and Positrons by neutral Atoms" code developed by Salvat et al. Freely available at https://github.com/eScatter/elsepa

RBEB implementation in GEant4DNA - N2

 e^- impact ionization of N2:

- Energy range: threshold 1GeV
- Type : analytical
- Model class: G4DNARBEBGas

ELSEPA – implementation in Geant4DNA

 e^- elastic scattering on N2, O2:

- Energy range:
 - 100 eV 1GeV : ELSEPA data
 - < 100eV : weighted average of exp data (work in progress)
- Type : interpolated

N2: DCS Cumulated distribution

Data files \longrightarrow 🧃

Sigmadiff_cumulated_elastic_e_N2_elsepa.dat Sigmadiff_cumulated_elastic_e_O2_elsepa.dat

ELSEPA – implementation in Geant4DNA

 e^- elastic scattering on N2, O2:

- Energy range:
 - 100 eV 1GeV : ELSEPA data
 - < 100eV : weighted average of exp data (work in progress)

160 180

10

• Type : interpolated

Ionisation/Elastic – Total CS

Work in progress and next steps

- 1. Electronic excitation: implementation in Geant4DNA
 - BEf-scaled Born method
 - \rightarrow for dipole-allowed transitions
 - Ab-initio R-matrix close-coupling method (UKRmol+ code)
 - \rightarrow For very low energies and resonances
 - Experimental data

- 2. Testing and validation against reference data and other MC models:
 - Comparison with predefined models from Geant4
 - Range calculation using /dna/range example and comparison with data
 - Stopping power calculation- using /dna/spower example and comparison with data

Conclusions

- New G4DNA models to simulate electron impact ionization and elastic scattering on N2 and O2 molecules have been implemented in the energy range from threshold up to 1 GeV
- The results are in good agreement with experimental data
- Models suitable for new molecules in Geant4DNA: •
 - Potential impact on the physics of the atmosphere
 - Open the way for **new space-related studies** regarding chemistry and exobiology Thank you for your
 - Can be applied to any kind of Geant4-DNA simulation.

Backup slides

Ionisation - RBEB

- Electron impact ionization
- Method: Relativistic Binary Encounter Bethe (RBEB) (Kim, 2000);
- **Energy range**: threshold 1 GeV.
- Advantages:
 - depends only on B, U, N for each MO;
 - allows energy loss to be randomly sampled without using tables;
 - Applicable to different targets (H2O, DNA, gases..)

SDCS for Molecular Orbital:

$$\begin{split} \frac{d\sigma_{ion,MO}}{dW} &= \frac{\pi a_0^2 \alpha^4 N}{(\beta_t^2 + \beta_u^2 + \beta_b^2) 2b'} \bigg\{ \Big[ln(\frac{\beta_t^2}{1 - \beta_t^2}) - \beta_t^2 - ln(2b') \Big] \Big[\frac{1}{(w+1)^3} + \frac{1}{(t-w)^3} \Big] \\ &- \frac{1}{t+1} \big(\frac{1}{w+1} + \frac{1}{t-w} \big) \Big[\frac{1+2t'}{(1+t'/2)^2} \Big] + \frac{1}{(w+1)^2} + \frac{1}{(t-w)^2} + \frac{b'^2}{(1+t'/2)^2} \bigg\} \end{split}$$

B: Binding Energy
U: Average Kinetic Energy
N: Electron Occupation Number

W: ejected e^- energy; T: incident e^- energy; U=u/B, w=W/B, t=T/B; $S = (4\pi a_0^2 N R^2)/B^2$

GEANT4-DNA ELECTRON Ionisation (alternative models to default one)							
Material	Corresponding model	Class name	Energy range	Type			
H_2O Gold	G4DNACPA100IonisationModel G4DNARelativisticIonisationModel	BEB* MRBEBV**	11 eV - 255 keV 8.3 eV - 1 GeV	interpolated analytical			
 * Binary Encounter Bethe ** Modified Relativistic Binary Encounter Bethe Vriens (for alkali metals - low binding energy regime) 							

Elastic scattering – ELSEPA code

"ELastic Scattering of Electrons and Positrons by neutral Atoms" code developed by Salvat et al. Freely available at https://github.com/eScatter/elsepa

- Method: Indipendent Atom Model (Mott and Massey 1965)
 - Relativistic partial wave analysis
 - Molecular **SDCS** as a coherent sum of atomic scattering amplitudes
- Energy range: tens of eV 1 GeV
- Advantages:
 - Easy to change calculation parameters and interaction potential models;
 - Allows to calculate DCS in a variety of materials;

GEANT4-DNA ELECTRON Elastic (alternative model to default one)

Material	Corresponding model	Class name	Energy range	Type
Gold	Relativistic PW (ELSEPA)	G4DNAELSEPAElasticModel	10 eV - 1 GeV	interpolated

ELSEPA interaction potential

Optical potential model: $V(r) = V_{st}(r) + V_{ex}(r) + V_{cp}(r) - iW_{abs}(r)$

Electrostatic potential $V_{st}(r)$

Potential model:

Nuclear charge: Fermi distribution;

Electron density: Dirac–Fock distribution.

Correlation-polarization potential $V_{st}(r)$

Influence at small scattering angles and E < 500eV

- Potential model:
 - Buckingham potential + LDA correlation (Perdew and Zunger)
- Free parameters:
 - static polarizability $\alpha_d = 1.562E-24(02)$,
 - cut-off parameter $b_{pol}^2 = \max[(E 20 \text{ eV})/\text{eV}, 1]$.

Exchange potential $V_{ex}(r)$ Potential model: Furness–McCarthy potential.

Inelastic absorption potential $-iW_{abs}(r)$:

Influence at intermediate and large scattering angles

- Potential model:
 - LDA potential (Salvat)
- Free parameters:
 - lowest excitation energy $\epsilon_1 = 0.98 \text{ eV}(O2)$, 7.63 (N2)
 - absorption strength $A_{abs} = 2$

N.B. Empirical parameters are **validated for noble gases** and mercury

RBEB - implementation in GEant4DNA O2

 e^- impact ionization of O2:

- Energy range: threshold 1GeV
- **Type** : analytical
- Model class: G4DNARBEBGas

Excitation CS

- BEf-scaled Born method:
 - For electric dipole-allowed transitions
 - It depends by exp. Or theo. Quantities
 - Born Cross Section
 - Optical oscillator strenght
- Ab-initio R-matrix close-coupling method
 - Accurate for TCS in the low energy range (5eV – 100 eV);
 - UKRmol+ code for the calculations.

e + 0 v=0-1 Resonance Elastic 10 TCS Cross section (10⁻¹⁶ cm²) Ion(Total dissociation 10° MTCS a / 10 rot(J=1-3) Born 4+A'-10 attac 10 0.01 0.1 10 100 1000 Impact energy (eV)

PHYSICAL REVIEW A 73, 052707 (2006)

R-matrix calculation of electron collisions with electronically excited O2 molecules

Motomichi Tashiro* and Keiji Morokuma Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Ge Jonathan Tennyson Department of Physics and Astronomy, University College London, London WCII (Received 11 November 2005; published 15 May 2006) Between the set of the set of

He Su¹, Xinlu Cheng², Hong Zhang^{1,*}⁽³⁾ and Jonathan Tennyson^{3,*}⁽³⁾

• Experimental data

Tashiro and Murukuma (2007):

