

THE SIMP PROJECT

CLAUDIO GATTI, LABORATORI NAZIONALI DI FRASCATI - INFN

I

Quantum Technologies within INFN, Padova 20-21 January 2020

- Introduction
 - I. The SIMP project
 - 2. Why single microwave-photon detection
- JJ
 - I. JJ as an artificial atom
 - 2. Al junctions fabrication and test
 - 3. Cryostat for RF measurement
 - 4. CBJJ Simulation

TES

- I. TES requirements
- 2. TES films and nanowires
- 3. Measurements
- 4. Impedance matching in waveguide
- Related Projects
- Conclusion

OUTLINE

INTRODUCTION

SIMP: SIngle Microwave Photon detection

Development of single microwave photon counter (10-100 GHz) with two technologies:

- I. Current biased Josephson Junction (LNF, Salerno, CNR-IFN)
- 2. Transition Edge Sensor (INFN-Pi, CNR Nano-NEST, TIFPA, INRIM)

3 years project approved in CSNV in 2018

Detection of faint e.m.-signals is performed efficiently in a wide range of frequencies from MHz to visible as in the search for galactic axions.

Linear-amplifier noise is prohibitively increased by standard quantum limit above 10-20 GHz while bolometers and photon counters are not sensitive enough (or too noisy) below the THz (see however Schuster et al., Nature 445, pp. 515 (2007)).

The ultimate sensitivity of experiments in the region 10-500 GHz can be reached only by low dark-count and efficienct single microwave-photon detectors.

Bolometers

photon counters

detection single microwave-photon

Kokkoniemi et al. Nat. Com. Phys. https://doi.org/10.1038/s42005-019-0225-6

CURRENT BIASED JOSEPHSON JUNCTION

Artificial Atoms With Josephson Junctions

$$\psi_L = \sqrt{\rho_L} e^{i\varphi_L} \qquad \psi_R = \sqrt{\rho_R} e^{i\varphi_R}$$

F.Chiarello CNR-IFN Insulating barrier

Symbol

Josephson equations
Current flowing in the junction

$$I = I_c \sin \varphi$$
Voltage at the junction

$$V = \frac{\hbar}{2e} \frac{d\varphi}{dt}$$
Phase difference across the junction

$$\varphi = \varphi_R - \varphi_L$$

Typical values for JJ
$$\omega/2\pi \sim 10~{
m GHz}$$
 $I_c \sim 10~\mu{
m A}$ $C_J \sim 1~{
m pF}$ $T_1 \sim 1~\mu{
m s}$

Quantum Behaviour

Tunnel Effect

I₀ = 9.489 μA

T_{esc} (mK)

100

MQT I

10k 10

o "Classical Junction" I₀≃ I.383 μA

100 T (mK) 1000

[Γ(P) - Γ(O)]/Γ(O)

Fabrication Of Tunnel Josephson Junction

Current Biased Josephson Junction

Preliminary test of Al Josephson Junctions at LNF

Α(μm²)	$V_{gap}(\mu V)$	R_N(Ω)	$I_{C}=\pi/4V_{gap}/R_{N}$ (nA)	$T_{C} = V_{gap} / 3.53 k_{B} (K)$
8	400	500	600	1.3
4	400	1000	300	1.3

First test with non-optimal filtering and screening

Leiden Cryogenics MCK50-100

Equipped only for AC/DC test

Preliminary test of Josephson Junctions at LNF

escape probabilities at different temperatures

Preliminary test of Josephson Junctions at LNF

Attempting an interpretation including thermal activation, quantum tunneling, trapping and re-trapping.

Longobardi et al. PRL 109 050601 (2012)

escape probabilities at different temperatures

LNF Dilution Refrigerator For RF Measurements

Leiden CF-CS-II0-I000			
Sumitomo PT	1.5 W at 4.2 K		
Cooldown time (with LN)	2 days		
Base temperature (measured)	8.5 mk		
Cooling power at 100 mK (measured)	450 μW (up to 700 μW with a new pumping system)		
(measured) new pumping system)			

4 RF lines installed from 300 K to MC

Next goal is to reproduce the results of Chen et al. PRL 107, 217401 (2011)

CBJJ Simulation

Transition Edge Sensors for 30-100 GHz

 $V \sim 300 \times 80 \times 35 \text{ nm}^3$ $\gamma \sim 10^{-22} \text{ mJ/K}^2/\text{nm}^3$ $T_c \sim 40 \text{ mK}$ $\sigma_E \sim 20 \ \mu\text{eV} \sim 5 \text{ GHz}$

Andreev mirrors: electrons trapped in the nanowire

With C~10⁻²¹ J/K a 10 GHz photons $\rightarrow \Delta T$ = few mK

TES Films with 40 mK T_{C}

Bilayer Ti(11 nm) Au(27 nm) Tc=40 mK

Bilayer Al(10-20 nm) Cu(10-15 nm) Tc=40 mK

TES Nanowire

CHIP (4 mm x 4 mm) with 12 devices

Nanowire characterization underway

Ti/Au nanowires

Lenght	I-2 μm
Width	150-300 nm
t _{Au}	27 nm
t _{Ti}	l I nm

TES Nanowire

Lenght	Ι.5 μm
Width	100 nm
t _{Al}	10.5 nm
t _{Cu}	15 nm

Direct measurement of nanowire properties: Tc, transition steepness, e-ph coupling, bilayer E_{gap} .

Characterization Of TES Nanowire

Chip in preparation with nanowires for TES bias and readout with SQUID

TIFPA Trento Institute for Fundamental Physics and Applications

TIFPA Dilution Refrigerator

NRiM

INRIM Adiabatic Demagnetization Refrigerator (30 mK)

Janis 100 μW a 100 mK T_{base} 20 mK

Signal Collection In Waveguide

Simulation of finline with ANSYS HFSS, to match waveguide impedance to TES

Field collected on the finline

Related Projects

FET OPEN SUPERGALAX

CNR (IT, PI, exp)

INRIM (IT, exp)

INFN (IT, axion exp)

KIT (DE, exp)

Leibniz IPHT (DE, exp)

RUB (DE theory)

LU (UK, theory)

Network of N interacting superconducting qubits $|CS\rangle \longrightarrow \Delta \omega_S$ $|O\rangle \oplus \Delta \omega_S$

> Measure a shift of cavity resonance peak (Stark shift) when there's a photon

ATTRACT T Converse INFN Pi CNR-NANO Pi SeeQC

Phys. Rev. Appl. 9, 054027 (2018)

Conclusion

- Work is proceeding fast both for TES and CBJJ
- In the coming months we expect to:
 - I. Couple nanowire to a SQUID
 - 2. Couple TES in waveguide and start photon-counting experiments
 - 3. Improve Tc of nanowires
 - I. Complete RF setup of dilution refrigerator
 - 2. Start RF test on TL+JJ device
 - 3. Improve simulation for selection of device parameters

Thank You!

Macroscopic Quantum Tunneling

