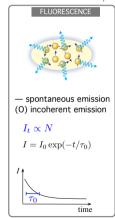
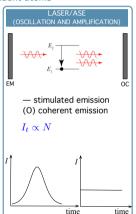
A macroscopically extended coherent state DFA, Padova

C. Braggio

January 21, 2020

OUTLINE


- introduce a test bed for new quantum technologies: a macro-coherent atomic state
 - how we accomplished coherence among 10¹³ atoms
 - ⇒ rare-earth doped materials (Er:YSO, Er:YLF)
- Sterile Neut⇒ spectroscopic properties and coherence time
 - macro-coherence in superfluorescence
 - ⇒ pulsed emission dynamics
 - \Rightarrow average intensity of the coherent emission
 - applicability to elusive particles detection: axions, neutrinos (quantum sensing in particle physics)


QCD Axions

Little Higgs

Emission by an ensemble of N excited atoms

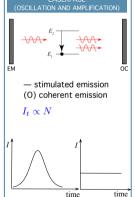
independent atoms

EMISSION BY AN ENSEMBLE OF N EXCITED ATOMS.

independent atoms

LASER/ASE

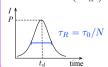
- spontaneous emission (O) incoherent emission

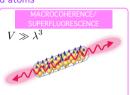

FLUORESCENCE

$$I_t \propto N$$

$$I = I_0 \exp(-t/\tau_0)$$

000




correlated atoms

 initial moment (O) pulsed coherent emission

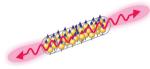
$$I_t \propto N^2$$

 $I(t) = 4P \operatorname{sech}^2 \left(\frac{t - t_d}{2\tau_R}\right)$

 macro-dipole formation (O) pulsed coherent emission

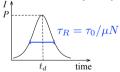
$$I_t \propto N^2$$

$$I(t) = 4P \operatorname{sech}^2 \left(\frac{t - t_d}{2\tau_R}\right)$$



by the emission wavelength (\sim 1 μ m) $\rightarrow N < 10^8 \text{ (for } 10^{20} \text{ cm}^{-3}\text{)}$

as the coherent region is limited N can reach the Avogadro number



MACROCOHERENCE/ SUPERFLUORESCENCE

macro-dipole formation (out) bunched coherent emission

$$I_t \propto N^2$$
 $I(t) = 4P \operatorname{sech}^2 \left(\frac{t - t_d}{2\tau_R}\right)$

$$\mu = \frac{3\Omega_0}{8\pi}$$
, with $\Omega_0 = \frac{\lambda^2}{\pi\omega_0^2}$

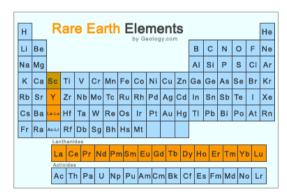
 λ emission wavelength ω_0 beam width

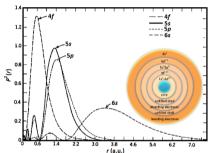
REQUIREMENTS

Superfluorescence, which is the signature of macrocoherence, is observed when other interactions (collisions, thermal noise, ...) do not influence the phase of **identical** atoms during emission

$$au_R < T_2^\star, \quad T_2^\star = rac{1}{\pi \Gamma_{
m inh}} \,\,\, (\Gamma_{
m inh} \,\, {
m inhomogeneous \, linewidth})$$

$$au_E < au_C < au_R < T_2, T_2^\star \quad ext{with } au_E = L/c ext{ (L sample length)}$$

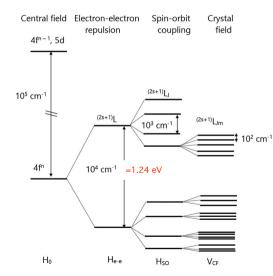

\Rightarrow Long coherence time T_2 :

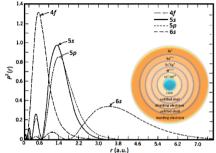

The coherence time T_2 is defined as the time during which a single atom keeps its state unperturbed both in terms of energy level and transition dipole phase. $T_2 = \frac{1}{\pi \Gamma_h}$, with Γ_h the homogeneous linewidth.

\Rightarrow Identical emitters:

To phase-lock, the oscillators must have similar frequencies $\Delta\phi=\Delta\omega t$. $T_2^\star=\frac{1}{\pi\Gamma_{\rm inh}}$, with $\Gamma_{\rm inh}$ the inhomogeneous linewidth.

Rare Earth (RE)-doped materials (laser crystals, scintillators, quantum computing etc...) $Re^{3+}=[Xe]4f^n \text{ (trivalent)} \qquad \text{with } [Xe]=1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6$

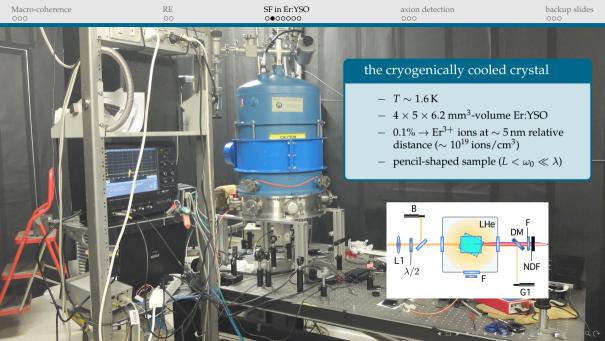


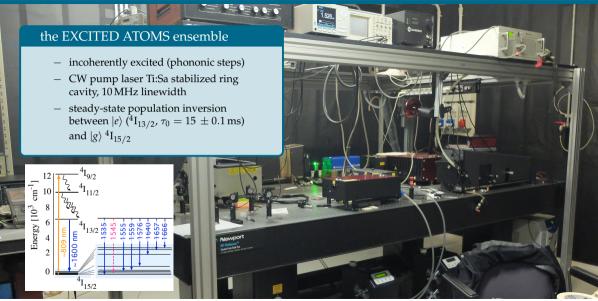

4f electrons:

- their wavefunctions are compressed by the 5s²5p⁶ outer orbitals of the Xe configuration
- → they are shielded from the environment
- \Rightarrow when doped into solid matrices, the crystal field is treated as a perturbation
- \Rightarrow when $T \lesssim 4$ K longest coherence times are observed

$$Re^{3+}=[Xe]4f^n$$
 (trivalent)

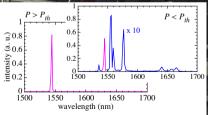
with [Xe]=
$$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6$$

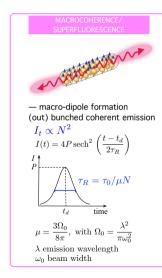

4f electrons:


- their wavefunctions are compressed by the $5s^25p^6$ outer orbitals of the Xe configuration
- → they are shielded from the environment
- ⇒ when doped into solid matrices, the crystal field is treated as a perturbation
- \Rightarrow when $T \lesssim 4 \,\mathrm{K}$ longest coherence times are observed

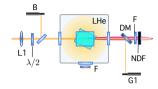
MACRO-COHERENCE IN OUR LAB

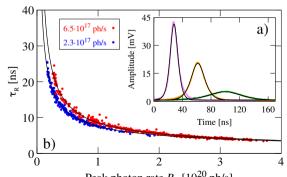
A macroscopic dipole involving $N=4\times 10^{12}$ atoms, whose decay rate is enhanced by more than 1-million times compared to τ_0 (spontaneous emission, independently emitting atoms)


C. Braggio et al., Spontaneous formation of a macroscopically extended coherent state arXiv:1909.00999 (2019)

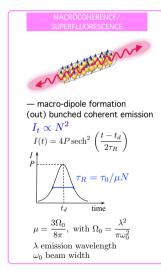


- CW pump laser Ti:Sa stabilized ring cavity, 10 MHz linewidth
- steady-state population inversion between $|e\rangle$ ($^4\mathrm{I}_{13/2}$, $au_0=15\pm0.1\,\mathrm{ms}$) and $|g\rangle$ $^4\mathrm{I}_{15/2}$

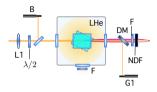


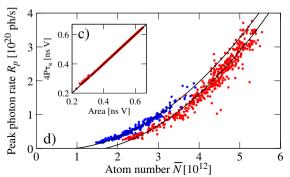


PULSED EMISSION DYNAMICS



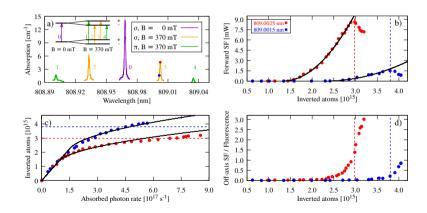
- stochastic process: Fig. a) obtained for identical excitation conditions
- signatures are those expected for pure superfluorescence regime (Fig. b) (sech²-shape and 1/√P scaling of τ_R)





PULSED EMISSION DYNAMICS

- for higher laser fluence (red dots)
 → greater N (correlated atoms)
- signatures are those expected for pure superfluorescence regime (N²-dependence of intensity)



AVERAGE FORWARD EMISSION INTENSITY

spontaneous selection of a subensemble of $\sim 10^{12}$ "identical" atoms from a steady state population inversion of 10^{15} atoms

OBJECTIVE

to introduce a new paradigm in elusive particle detection, in which the smallest of interaction rates is intrinsically amplified by a mechanism of macrocoherence

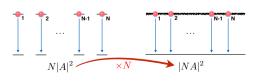
FIELD OF APPLICATION

- axion searches: conventional haloscopes, but also blooming of new concept, table-top experiments (complementary effort)
- neutrino physics (accelerators, big detectors)

Prior: macro-coherent amplification mechanism [M. Yoshimura, N. Sasao, M. Tanaka, Phys. Rev. A 86, 013812 (2012)] in the Radiative Emission of Neutrino Pair (RENP) [M. Yoshimura, Phys. Rev. D 75, 113007 (2007)] limited by QED backgrounds

EMISSION RATE ENHANCEMENT VIA MACROCOHERENCE

Coherent emission of particles (in a generic process involving axions/neutrinos and photons) from a collective ensemble of target (and excited) atoms is characterised by a quantum mechanical rate:


$$|\sum_{n=1}^{N} e^{i\sum_{m=1}^{M} \vec{k}_{m} \cdot (\vec{r} - \vec{r_{n}})} \mathcal{A}_{n}(\vec{r}, t)|^{2}$$

 \vec{k}_m momenta of the emitted particles r_n atom position

 $A_n(\vec{r},t)$ atomic amplitude part, slowly varying with $\vec{r_n}$ in the wavelength scale of $\vec{k_i}$

one emitted photon (m = 1) as in SF/SR:

$$\begin{aligned} |e\rangle &\rightarrow |g\rangle + \gamma \\ \mathcal{R}_{\gamma} &\propto |\sum_{n=1}^{N} e^{i\vec{k}\cdot(\vec{r}-\vec{r_n})} \mathcal{A}_n(\vec{r},t)|^2 \propto N^2 \end{aligned}$$

THANKS TO:

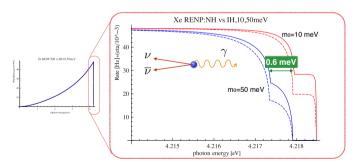
C. Braggio, F. Chiossi, N. Crescini *University of Padova and INFN*

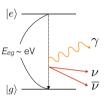
G. Carugno, INFN Padova

A. Ortolan, G. Ruoso, *INFN-LNL*

GROUP FUNDING ID

INFN gr2 (QUAX), gr5 (AXIOMA call), STEMS-ATTRACT (EU Commission)

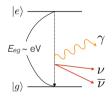




RADIATIVE EMISSION OF NEUTRINO PAIRS

A. Fukumi et al Prog. Theor. Exp. Phys. (2012), 04D002

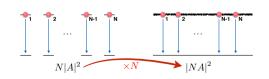
- radiative emission of neutrino pairs from excited atoms decaying to the ground level
- photon spectrum reveals: absolute mass, NH/IH, Majorana-Dirac, CP phases (α , β δ) ($\omega_{eg} \sim m_{\nu}$, in laser spectroscopy sub-meV energy resolution)
- rate of the RENP process $\sim 1/(10^{26} {
 m years})$ for single atom (current sensitivity of $0 \nu \beta \beta$)



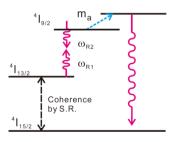
RADIATIVE EMISSION OF NEUTRINO PAIRS

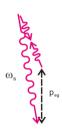
A. Fukumi et al Prog. Theor. Exp. Phys. (2012), 04D002

- radiative emission of neutrino pairs from excited atoms decaying to the ground level
- rate of the RENP process $\sim 1/(10^{26} \text{years})$ for single atom (current sensitivity of $0\nu\beta\beta$)
- \rightarrow coherence between $|e\rangle$ and $|g\rangle$ via Raman adiabatic process
- + trigger laser



three emitted particles
$$(m = 3)$$
: $|e\rangle \rightarrow |g\rangle + \gamma + \nu_i + \nu_j$


$$\mathcal{R}_{\gamma} \propto |\sum_{n=1}^{N} e^{i(\vec{k_1} + \vec{k_2} + \vec{k_3}) \cdot (\vec{r} - \vec{r_n})} \mathcal{A}_n(\vec{r}, t)|^2 \propto N^2$$
if $\vec{k_1} + \vec{k_2} + \vec{k_3} = 0$


LIMITATIONS

strong QED backgrounds (McQn, n involved photons)

AXION DETECTION

