SECRET

SECuRe quantum communication based on Energy-Time/time-bin entanglement

Giuseppe (Pino) Vallone

Quantum Technologies within INFN: status and perspectives

Summary

- 1 Introduction and motivations
- 2 The project
- 3 Future applications
- 4 Conclusions

Summary

- 1 Introduction and motivations
- 2 The project
- 3 Future applications
- 4 Conclusions

What is Quantum Communication?

- Quantum Communications is the ability of faithful transmit quantum states between two distant locations
- Creation of a quantum network
- Applications in security: QKD
- Ground QKD have progressed up to commercial stage using fiber-cables

Possible issues with classical cryptography

- Classical cryptography is based on (currently) hard computational problems
- Breakthrough in classical algorithm can broke security

Possible issues with classical cryptography

- Classical cryptography is based on (currently) hard computational problems
- Breakthrough in classical algorithm can broke security
- Quantum computer will broke some classical cryptograpic scheme (RSA)

QKD: quantum key distribution

- ► QKD: security based on physics
- Exploit quantum mechanics laws for establishing secure keys

Quantum state encoder

Test with fiber-link

► Lowest intrinsic QBER ever reported (<0.07%)

Summary

- 2 The project

QuantERA project

SECRET

Secure quantum communication based on energy-time/time-bin entanglement

Partners:

- ► PI: Linköping University Sweden
- ► INFN/UniPD Italy
- ► Universidad de Sevilla Spain

Time-bin encoding

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|S\rangle + e^{i\phi_0}|L\rangle)$$

Relative phase to encode the qubit

Time-bin is robust in fiber-optic propagation!

Time-bin entanglement

time-bin entanglement: $|\psi\rangle=\frac{1}{\sqrt{2}}(|S\rangle_A|S\rangle_A+e^{i\phi}|L\rangle_A|L\rangle_B)$

Phys. Rev. A 66, 062308 (2002)

Time-bin Bell's inequality loophole

▶ Bell's inequality: if violated, the experiment cannot be described by a local deterministic theory.

Time-bin Bell's inequality loophole

- ▶ Bell's inequality: if violated, the experiment cannot be described by a local deterministic theory.
- ▶ loophole for time-bin entanglement: the subensemble of selected events can depend on the phase settings

S. Aerts, P. G. Kwiat, J.-Å. Larsson, and M. Zükowski, Phys. Rev. Lett. 83, 2872 (1999)

Time-bin Bell's inequality loophole

- ▶ Bell's inequality: if violated, the experiment cannot be described by a local deterministic theory.
- ▶ loophole for time-bin entanglement: the subensemble of selected events can depend on the phase settings

S. Aerts, P. G. Kwiat, J.-Å. Larsson, and M. Zükowski, Phys. Rev. Lett. 83, 2872 (1999)

classical model is possible due to post-selection.

Removing the loohole

A. Cabello, A. Rossi, **GV**, F. De Martini, P, Mataloni **Phys. Rev. Lett. 102, 040401 (2009)**

Removing the loohole

A. Cabello, A. Rossi, GV, F. De Martini, P, Mataloni Phys. Rev. Lett. 102, 040401 (2009)

Intro The project Future applications Conclusions

New post-selection free

Post-selection-loophole-free Bell violation with genuine time-bin entanglement

SECRET project

So far, only Bell's inequality violation with genuine time-bin entanglement

SECRET project

So far, only Bell's inequality violation with genuine time-bin entanglement

Main target of SECRET: genuine energy-time entanglement-based quantum communication applications

SECRET project

So far, only Bell's inequality violation with genuine time-bin entanglement

Main target of SECRET: genuine energy-time entanglement-based quantum communication applications

- Objective 1: Quantum communication
- ▶ Objective 2: entanglement swapping and/or teleportation
- Objective 3: integrated photonics technology

Quantum communication exploiting ET entanglement without post-selection loophole

QKD by entangled photons with untrusted entangled-source

Development of novel building blocks based on genuine energy-time entanglement: entanglement swapping and/or teleportation

Development of novel building blocks based on genuine energy-time entanglement: entanglement swapping and/or teleportation

entanglement between particles that never interact

Development of novel building blocks based on genuine energy-time entanglement: entanglement swapping and/or teleportation

Implementation of genuine ET entanglement by using integrated photonics technology

Summary

1 Introduction and motivations

- 2 The project
- 3 Future applications
- 4 Conclusions

▶ Bell inequality introduced to rule out local deterministic theory.

▶ Bell inequality introduced to rule out local deterministic theory.

It has been violated in many different experiments (photons, ions, diamonds, atoms....) and also loophole-free violations demonstrated

▶ Bell inequality introduced to rule out local deterministic theory.

It has been violated in many different experiments (photons, ions, diamonds, atoms....) and also loophole-free violations demonstrated

► The Bell inequality can be used as a tool to certify entanglement: device-independent protocols

ALICE

X: choice of the measurement basis

a: output of the measurement

BOB

Y: choice of the measurement basis

b: output of the measurement

The following probabilities are measured:

If the above probabilities violate a Bell Inequality, entanglement between Alice and Bob can be proved

Fundamental physics

Gravitational redshift with single photons

$$\lambda = 800 \text{ nm}$$
 $h \sim 400 \text{ km}$
 $\ell = 6 \text{ km}$

$$\Delta\phi = rac{2\pi\ell}{\lambda}rac{gh}{c^2}\sim 2\,\mathrm{rad}.$$

- Possibility of measuring space-time curvature on quantum interference
- ► No predicted effect on photons in the Newtonian limit

Summary

- 1 Introduction and motivations
- 2 The project
- 3 Future applications
- 4 Conclusions

Conclusions

Energy-time entanglement fundamental for the future Quantum Internet: compatible with the optical fiber infrastructure

- ► Tool to connect quantum computers in different locations.
- Integrated photonic circuits can provide large advantages for interferometric stabilization, and speed of operation

THANK YOU FOR YOUR ATTENTION!

QuantumFuture

The shift in the communication paradigm

email: vallone@dei.unipd.it

http://www.dei.unipd.it/~vallone

http://quantumfuture.dei.unipd.it/