

Theoretical foundations Quantum Information

Quantum technologies within INFN: status and perspectives

Padova, January 20-21 2020

Giacomo Mauro D'Ariano Università degli Studi di Pavia and INFN Sezione di Pavia Center for Photonic Communication and Computing NWU

- Short presentation of QUit group
- tomography
- <u>Theoretical tool</u>: the "quantum comb"
- Foundations: "Information" as a paradigm for QT and QFT

Outline

<u>Practical application</u>: quantum tomography algorithm for x-ray medical

QUit contributions to qu-info

QI TOOLS

quantum tomography of states, transformations and measurements (ancilla-assisted) tomography)

QUANTUM ENTANGLEMENT

entanglement as a tool for improving the precision of q-measurements \rightarrow quantum

metrology

first entanglement witness schemes

entanglement transmission on noisy channels with correlated noise

QUANTUM COMPUTING

first encodings for quantum error correction

new quantum algorithms

"hyper-graph states" used for quantum computation

quantum memory channels

QUANTUM CRYPTOGRAPHY

quantum private queries

quantum privacy amplification in the presence of noise

INFORMATION THEORY

no info without disturbance

bosonic channel capacity with noise

NEW DEVICES FOR HIGH SENSITIVITY MEASUREMENTS (QUANTUM METROLOGY)

quantum radars

quantum GPS

quantum frequency measurements

Collaboration with experimental labs: Roma La Sapienza, Northwestern University

OPTIMISATION OF PROTOCOLS

broadcasting/cloning of states phase-estimation for mixed states estimation/discrimination of states and transformations cloning of phase-states, general states, and transformations quantum learning of transformation

OPTIMISATION METHODS

the "quantum comb": general method for optimisation of for quantum circuit architecture (quantum processing, algorithms, protocols, ...)

QUANTUM DEVICES

quantum RAM

. . .

new uncertainty relations

FOUNDATIONS OF QT, QFT AND IT

information-theoretic postulates for QT and for Free QFT "comb" notion for a new understanding of causality, with impact on:

quantum causal inference

causal discovery algorithms

reconciliation of QT with GR (causal structure itself as dynamical)

Practical application: quantum tomography algorithm for x-ray medical tomography

Lorenzo Maccone PI, GMD, Nicola Mosco (UniPV) Giampaolo Stopazzolo (Director Department of Health IT Vicenza, ULSS 8 Berica, Vicenza)

Collaboration with Siemens (Thomas Flohr, Forchheim, Germany)

$$\rho_{n,n+d} = \int_0^\pi \frac{d\phi}{\pi} \int_{-\infty}^{+\infty} dx \, p(x,\phi)$$

ncat lon \Box f the densit la la

POSSIBLE ADVANTAGES OF THE METHOD 90°

- -Suitable to photo counting detectors imaging in view of x-ray low-dose
- -Further iterative/adaptive reconstruction techniques can be used

-<u>Tests needed</u> to check if the method outperforms the inverse Radon for very low radiation doses with single photon detectors

With P. Perinotti and G. Chiribella (HK)

Quantum Circuits Architecture, Phys. Rev. Lett. 101 060401 (2008)

PRIN 2008

STREPS: SECOCQ **CORNER** COQUIT

Problem: what is the optimal board for given slots achieving a global input/output task optimally according to a given cost function?

Quantum Combs

The circuits-boards can be reshaped in form of a "comb", with an ordered sequence of slots, each between two successive teeth

The pins in a quantum comb represent quantum systems, with generally variable dimensions, entering or exiting from the board

Choi representation of q-operation

The input-output quantum operation achieved by any quantum circuit is a CP map, and a suitable representation is provided by the one-to-one correspondence with a positive operator called "Choi-Jamiolkowski operator".

The Choi operator is the output state of the map applied locally to a maximally entangled reference state with suitable normalisation.

equivalent to the comb, with all inputs on the left and all outputs on the right

Causal networks

To a comb we associate the Choi operator of the quantum operation of the causal network

Causality constraints: (N+1 inputs/outputs)

$$\operatorname{Tr}_{2n+1} \left[R^{(n)} \right] = R^{(N)} \equiv$$

entangled state max

Choi representation Choi--Jamiolkowski operator 9

 $I_{2n} \otimes R^{(n-1)}, \quad n = 0, 1, N,$ $RR, R^{(-1)} = 1$

Supermaps

A quantum comb performs a transformation that is a generalization of the quantum operation: the so called "supermap"

A supermap sends a series of N channels to one channel. Mathematically it is represented by a completely positive N-linear map which sends N Choi operators to one Choi operator, and with his own Choi operator satisfying the causality constraints.

Supermaps

More generally, quantum combs map series of channels into combs

or even more generally combs into combs

Supermaps

The notion of supermap is the last level of generalization, i.e. "supersupermaps" (mapping supermaps to supermaps) are still supermaps = quantum combs.

 $B \in \mathsf{B}(\mathsf{B}_{\mathrm{out}} \otimes \mathsf{B}_{\mathrm{in}}) = \mathsf{B}(\mathsf{H}_{\boldsymbol{d}} \otimes \mathsf{H}_{e} \otimes \mathsf{H}_{f} \otimes \mathsf{H}_{g})$

$$A * B = \operatorname{Tr}_{\mathsf{J}}[A^{\theta_{\mathsf{J}}}B] \in \mathsf{B}(\mathsf{H}_{\operatorname{out}} \otimes \mathsf{H}_{\operatorname{in}})$$

 $AB := (A \otimes I_{e,f,g})(I_{a,b,c} \otimes B)$

The link-product is commutative!

Link product

Choi-operator calculus

 $A \in \mathsf{B}(\mathsf{A}_{\mathrm{out}} \otimes \mathsf{A}_{\mathrm{in}}) = \mathsf{B}(\mathsf{H}_a \otimes \mathsf{H}_b \otimes \mathsf{H}_c \otimes \mathsf{H}_d), \qquad \mathsf{J} \equiv \mathsf{H}_d$

in-out

Circuits Architecture Optimization

Fixed input-output comb structure make a convex set

G. Chiribella, GMD, P. Perinotti, Phys. Rev. Lett. 101 180501 (2008)

in-out

Fixed input-output comb structure make a convex set

Causality constraints correspond to a hyperplane section of the convex

The border of the section is the section of the border, and extremals of the section belong to the original border

Circuits Architecture Optimization

in-out

- Causality constraints correspond to a hyperplane section of the convex
- The border of the section is the section of the border, and extremals of the section belong to the original border

Group-covariance gives another linear constraint:

$$[R, V_g] = 0 \implies R = \bigoplus_j R_j \otimes \mathbb{1}_m$$

Circuits Architecture Optimization

Circuits Architecture Optimization

- Generally the cost-function for optimisation is a concave function over the convex set of Choi.
- Free optimal combs are thus achieved upon minimising the cost-function over the set of extremal points.

A. Bisio, G. Chiribella, GMD, S. Facchini, P. Perinotti, Phys. Rev. Lett. 102 010404 (2009) IEEE J.Sel.Top. Quant. Electr.**15** 1646 (2009)

Optimal cloning of unitaries

 $1 \rightarrow 2$ cloning of unitaries

G. Chiribella, GMD, P. Perinotti, Phys. Rev. Lett. 101 180504 (2008)

Optimal learning of unitaries

A. Bisio, G. Chiribella, GMD, S. Facchini, P. Perinotti, Phys. Rev. A 81 032324 (2010)

Foundations:

"information" as a paradigm for QT and QFT

With P. Perinotti, A. Bisio, A. Tosini, M. Erba, N. Mosco, ...

Quantum Theory: the "grammar" of Physics

Quantum Theory is an OPT

NOTICE: marginals depend on the marginalised part of the graph!

NOTICE: marginals depend on the marginalised part of the graph!

An OPT is an Information Theory

category theory: transformations

morphisms → objects systems

OPT: strict monoidal braided category QT: symmetrical OPT

finite DAG

OPT=information theory

Quantum Theory as OPT						
system	A	\mathscr{H}_{A}				
system composition	AB	$\big \ \mathscr{H}_{AB} = \mathscr{H}_A \otimes \mathscr{H}_B$				
transformation	$\mathscr{T} \in \mathrm{Transf}(\mathrm{A} \to \mathrm{B})$	$ \mathscr{T} \in \operatorname{CP}_{\leq}(\operatorname{T}(\mathscr{H}_A) \to \operatorname{T}(\mathscr{H}_B))$				
Theorems						
trivial system system	Ι	$ \mathscr{H}_{\mathrm{I}} = \mathbb{C}$				
deterministic transformation	$\mathscr{T} \in \operatorname{Transf}_1(A \to B)$	$ \mathscr{T} \in CP_{=}(T(\mathscr{H}_{A}) \to T(\mathscr{H}_{B}))$				
states	$\rho \in St(A) \equiv Transf(I \rightarrow A)$	$\mid \rho \in \mathrm{T}^+_{\leq 1}(\mathscr{H}_{\mathrm{A}})$				
	$\rho \in St_1(A) \equiv Transf_1(I \rightarrow A)$	$\mid \rho \in \mathrm{T}_{=1}^{+}(\mathscr{H}_{\mathrm{A}})$				
	$\rho \in St(I) \equiv Transf(I \rightarrow I)$	$\mid \rho \in [0,1]$				
	$\rho \in St_1(I) \equiv Transf(I \rightarrow I)$	$ \rho = 1$				
effects	$\varepsilon \in Eff(A) \equiv Transf(A \rightarrow I)$	$ \varepsilon(\cdot) = \operatorname{Tr}_{A}[\cdot E], \ 0 \leq E \leq I_{A}$				
	$\varepsilon \in \mathrm{Eff}_1(\mathrm{A}) \equiv \mathrm{Transf}_1(\mathrm{A} \to \mathrm{I})$	$\varepsilon = Tr_A$				

	_
	- 1
	_
	<u> </u>
_	
	I

Principles for Quantum Theory

- P1. Causality
- P2. Local discriminability
- P3. Purification
- P4. Atomicity of composition
- P5. Perfect distinguishability
- P6. Lossless Compressibility

- G. Chiribella, G. M. D'Ariano, P. Perinotti, *Probabilistic Theories with Purification* Phys. Rev. A 81 062348 (2010)
- G. Chiribella, G. M. D'Ariano, P. Perinotti, Informational derivation of Quantum Theory Phys. Rev A 84 012311 (2011)

Other OPTs

	Caus.	Perf. disc.	Loc. discr.	n-loc. discr.	At. par. comp.	At. seq. comp.	Compr.	\exists Purification	$\exists !$ Purification]
QT										
CT	√		\checkmark					×	×	
QBIT	\checkmark		\checkmark	 ✓ 	 Image: A set of the set of the	\checkmark	×			
FQT	√		×	 ✓ 	 Image: A set of the set of the	\checkmark	×			
RQT	√		×	✓		\checkmark	 Image: A set of the set of the			
NSQT	?	?	×	×	?	?	?	?	?	
PR	√	?	\checkmark	 ✓ 		?	×	×	×	
DPR	√	?	\checkmark	 ✓ 	 ✓ 	?	×	×	×	
HPR	√	?	\checkmark	 ✓ 		\checkmark	 Image: A set of the set of the			
FOCT	X	?	\checkmark			?	?	×	×	
FOQT	×	?	?		?	?	?	?	?	
NLCT	√		×		×	?	 Image: A second s	×	×	
NLQT	?	?	?		?	?	?	?	?	

QT: Quantum theory

CT: Classical theory

- QBIT: Qubit theory
- FQT: Fermionic quantum theory
- RQT: Real quantum theory
- NSQT: Number superselected quantum theory

PR: PR-boxes theory

- DPR: Dual PR-boxes theory
- HPR: Hybrid PR-boxes theory
- FOCT: First order classical theory
- FOQT: First order quantum theory
- NLCT: Non-local classical theory
- NLQT: Non-local quantum theory

"HOW TO GET THE "MECHANICS?"

QUANTUM FIELD THEORY: an ultra-short account

Info-theoretical principles for Quantum Field Theory

Info-theoretical principles for Quantum Field Theory

Thank you for your attention