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Outline
• Short presentation of QUit group 

• Practical application: quantum tomography algorithm for x-ray medical 
tomography 

• Theoretical tool: the “quantum comb” 

• Foundations: “Information” as a paradigm for QT and QFT





QUit contributions to qu-info
QI TOOLS 

quantum tomography of states, transformations and measurements (ancilla-assisted 
tomography) 

QUANTUM ENTANGLEMENT 
entanglement as a tool for improving the precision of q-measurements  ⟶ quantum 
metrology 
first entanglement witness schemes 
entanglement transmission on noisy channels with correlated noise 

QUANTUM COMPUTING 
first encodings for quantum error correction 
new quantum algorithms  
“hyper-graph states” used for quantum computation 
quantum memory channels 

QUANTUM CRYPTOGRAPHY 
quantum private queries  
quantum privacy amplification in the presence of noise 

INFORMATION THEORY 
no info without disturbance 
bosonic channel capacity with noise 

NEW DEVICES FOR HIGH SENSITIVITY MEASUREMENTS (QUANTUM METROLOGY) 
quantum radars  
quantum GPS 
quantum frequency measurements

OPTIMISATION OF PROTOCOLS  
broadcasting/cloning of states  
phase-estimation for mixed states  
estimation/discrimination of states and transformations 
cloning of phase-states, general states, and transformations 
quantum learning of transformation 

OPTIMISATION METHODS 
the “quantum comb”: general method for optimisation of for 
quantum circuit architecture (quantum processing, algorithms, 
protocols, …) 

QUANTUM DEVICES 
quantum RAM  
new uncertainty relations 

FOUNDATIONS OF QT, QFT AND IT 
information-theoretic postulates for QT and for Free QFT 
“comb” notion for a new understanding of causality, with impact 
on:  

quantum causal inference 
causal discovery algorithms  
reconciliation of QT with GR (causal structure itself as 
dynamical) 
…

Collaboration with experimental labs:  Roma La Sapienza, Northwestern University 



Practical application:  
quantum tomography algorithm  
for x-ray medical tomography

Lorenzo Maccone PI, GMD, Nicola Mosco (UniPV)

Giampaolo Stopazzolo (Director Department of Health IT Vicenza, ULSS 8 Berica, Vicenza)

Collaboration with Siemens (Thomas Flohr, Forchheim, Germany)
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Quantum homodyne tomography of the radiation state
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Bose operator identities 56

Ws(α,α) =

⎧
⎪⎨

⎪⎩

1
πQ(α,α) for s=-1 (Q-function)
W (α,α) for s=0 (Wigner function)
P (α,α) for s=1 (P -function)

(9.189)

where also

Q(α,α) ≡ ⟨α|ϱ̂|α⟩ , (9.190)

ϱ̂ =
∫

d2αP (α,α) |α⟩⟨α| . (9.191)

Ws(α,α) =
∫
d2βWs′(β, β)

2

π(s′ − s)
exp

(

− 2

s′ − s
|α− β|2

)

(9.192)

= exp

⎛

⎝s
′ − s

2

∂2

∂α∂α

⎞

⎠Ws′(α,α) , (s′ > s) . (9.193)

W (α,α) =
2

π
Tr[ϱ̂D(2α) exp(iπa†a)] . (9.194)

Proof:

W (α,α)
.
=

∫

C

d2λ
π2

eαλ−αλTr[D(λ)ϱ̂] =

∫

C

d2λ
π2

eαλ−αλTr
[
e
a†∂

β |0⟩⟨0|ea∂β ϱ̂
] ∣∣∣∣∣
β=β=0

e|β|
2+βλ−βλ− 1

2 |λ|2

= Tr
[
e
a†∂

β |0⟩⟨0|ea∂β ϱ̂
] ∣∣∣∣∣
β=β=0

e|β|
2
∫

C

d2λ
π2

e(α−β)λ−(α−β)λ− 1
2 |λ|2

= Tr
[
e
a†∂

β |0⟩⟨0|ea∂β ϱ̂
] ∣∣∣∣∣
β=β=0

e|β|
2 2
π
e−2|α−β|2

=
2
π
Tr
[
e
a†∂

β |0⟩⟨0|ea∂β ϱ̂
] ∣∣∣∣∣
β=β=0

e−2|α|2+2(αβ+βα)−|β|2

=
2
π
e−2|α|2e2(αβ+βα)Tr

[
e
a†(2α+∂

β
)|0⟩⟨0|ea(2α+∂β)ϱ̂

] ∣∣∣∣∣
β=β=0

e−|β|2

=
2
π
e−2|α|2Tr

[
e2a

†α
∞∑

n=0

(−)n
(a†)n√

n!
|0⟩⟨0| a

n

√
n!

e2aαϱ̂

]
=

2
π
e−2|α|2Tr

[
e2a

†αeiπa
†ae2aαϱ̂

]

=
2
π
e−2|α|2Tr

[
e2a

†αe−2aαeiπa
†aϱ̂
]
=

2
π
Tr[ϱ̂D(2α) exp(iπa†a)] .
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which proves Eq. (9.197). The check for s = 0 is trivial. For s = −1 one has

W−1(α,α) =
1
π
e−|α|2Tr

[
(−O+)a

†aeαaϱ̂eαa
†
]
=

1
π
e−|α|2Tr

[
|0⟩⟨0|eαaϱ̂eαa

†
]

=
1
π
e−|α|2⟨0|eαaϱ̂eαa

†
|0⟩ = 1

π
Q(α,α) .

Eq. (9.196) is proved using the following identities

e
2α
1−sa†

(
s+ 1
s− 1

)a†a

e
2α
1−sa =

(
s+ 1
s− 1

)a†a

e−
2α
1+sa†

e
2α
1−sa

e
4|α|2

1−s2

(
s+ 1
s− 1

)a†a

e
2α
1−sae−

2α
1+sa†

= e
4|α|2

1−s2 e−
2α
1+sa

(
s+ 1
s− 1

)a†a

e−
2α
1+sa†

.

9.13.1 Density matrix from Wigner functions

ϱ̂ =
2

1 + s

∫
d2αWs(α,α)e

− 2
1+s |α|
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(

2α√
1− s2

a†
) (
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(
2α√
1− s2

a
)

. (9.198)

Proof: using Eq. (9.130), namely

ϱ̂ =

∫
d2α
π

Tr[ϱ̂D(α)]D†(α) ,

and Eq. (9.197)
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namely
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(9.200)

and then the result follows easily. In particular, for s = 0 one has the inverse of the Glauber formula

ϱ̂ = 2
∫

d2αW (α,α)D(2α)(−)a†a , (9.201)

c
a

d

b (LO) |z>

Ι  −Ι1 2

G. M. D’Ariano, U. Leonhardt and H. PRA 52 R1801 (1995) 
G. M. D’Ariano, C. Macchiavello and M.G.A. Paris, PRA 50 4298 (1994)
M. Beck, D. T. Smithey, and M. G. Raymer PRA 48 R890 (1993)
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9.3.3 Position/quadrature representations

Quadrature operator and correspondence with position and momentum:

x̂φ =
1

2
(a†eiφ + ae−iφ) . (9.34)

Putting h̄ = 1
2 and ω = 1 one obtains the relations between position-momentum and quadratures

x̂0 ≡ x̂ ≡ q̂ , x̂π/2 ≡ ŷ ≡ p̂ , (9.35)

p̂ = −ih̄∂q , ŷ = − i

2
∂x , (9.36)

[x̂, ŷ] =
i

2
, [q̂, p̂] = ih̄ , a = x̂+ iŷ , (9.37)

[x̂φ, x̂φ′ ] =
i

2
sin(φ′ − φ) . (9.38)

[4]2.4.7✎
✍

☞
✌q̂|q⟩ = q|q⟩ , x̂|x⟩ = x|x⟩ ,

∫ +∞

−∞
dx |x⟩⟨x| . (9.39)

✓
✒

✏
✑⟨q|n⟩ =

(
δ

π1/22nn!

) 1
2

Hn(δq)e
− 1

2 δ
2q2 , δ .=

√
ω

h̄
, (9.40)

⟨x|n⟩ =
(
2

π

) 1
4 1√

2nn!
Hn(
√
2x)e−x2

. (9.41)

x̂φ|x⟩φ = x|x⟩φ , where |x⟩φ = eia
†aφ|x⟩ . (9.42)

⟨x|f(x̂, ŷ)|ψ⟩ = f(x,− i

2
∂x)⟨x|ψ⟩ . (9.43)

K. Vogel and H. Risken PRA 40 2847(1989)

Reconstruct 
Wigner from its 

projections

Projections are 
the pdfs of 

quadratures

quadratures 
via homodyne 

detection

1-1 connection 
between density 

matrix and 
Wigner
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14 G. M. D’Ariano, Bilkent lectures, Ankara, July 2-10 1995

and either the number (complete) or the coherent/squeezed (over-complete) represen-
tations satisfy the Heisenberg inequality (31) with the equal sign. Now the question
is if it is possible to find (over)-complete basis for the Fock space having uncertainty
product larger than 1

4 : in my knowledge, there are no such “spread” basis. Notice
that it is difficult to obtain “spread” basis as unitary transformations of either the
number or the coherent basis. In fact, any unitary operator that is the exponential
of a Hermitian bilinear polynomial in a and a

† preserves the uncertainty product: on
the other hand, the exponential of a Hermitian polynomial of degree higher than 2 is
generally not analytical on the Fock basis (apart from trivial functions of the number
operator) [28].

8 Statistical errors

Figure 4: The kernel �n|Kη(x − x̂φ)|n + d�
of Eq. (30) for η = 1 (the y-scale is fixed).

In this section we study in more detail the
analytic form of the integral kernel, in order
to understand the mechanisms producing
statistical errors in the measured matrix
elements. We only analyze the case of
the number representation, with the kernel
given by Eq. (30): the same arguments can
be easily extended to other representations.

In Fig. 4 the kernel �n|Kη(x− x̂φ)|n+d�

for η = 1 is plotted versus x for φ = 0
at different values of n, and d. One can
see that for d = 0—along the diagonal
of the matrix—the range of the kernel is
bounded between -2 and 2, and increases
slowly versus distance d from the diagonal.
For increasing n and d the kernel oscillates
fast, with an increasing number of nodes.
Fast oscillations make the average of the
kernel—hence the measured value �n|�̂|m�—more sensitive to fluctuations of the
random outcomes x of the quadrature, producing confidence intervals that increase
versus n and d. On the other hand, the bounded range makes errors themselves
bounded, so they saturate at large n’s.

For η < 1 the behavior of the kernel changes dramatically, with the range
increasing versus n more and more rapidly as η approaches the lower bound η = 0.5
(see Fig.5). In this case the resulting errors increase rapidly versus n, and more data
will be needed to “clean out” the additional noise due to nonunit quantum efficiency.

The above mechanisms for errors are well illustrated in Figs. 6 and 7, where
the photon number probability distribution is plotted from computer-simulated

ρn,n+d =

∫ π

0

dφ

π

∫ +∞

−∞

dx p(x,φ)Kn,n+d(x,φ)
ρn,n+d =

∫ π

0

dφ

π

∫ +∞

−∞

dx p(x,φ)Kn,n+d(x,φ)

Quantum homodyne tomography of the radiation state



W (α, ᾱ)
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Quantum homodyne tomography of the radiation state

W (α, ᾱ) = Re
∞∑

d=0

eid arg(α)
∞∑

n=0

Λ(n, d; |α|2)ϱn,n+d

-Structurally very paralleliseable algorithm 
-Image analysis in polar coordinates
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Truncation of the density m
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-Tests needed to check if the method outperforms the inverse Radon for very low 
radiation doses with single photon detectors

Possible advantages of the method

-Suitable to photo counting detectors imaging in view of x-ray low-dose 
-Acquisition can be stopped on the fly when a sufficient level of detail is reached 

-Further iterative/adaptive reconstruction techniques can be used 



Theoretical tool:  
the quantum comb

With P. Perinotti and G. Chiribella (HK)

Quantum Circuits Architecture, Phys. Rev. Lett. 101 060401 (2008) 

STREPS: 
SECOCQ 
CORNER 
COQUIT

PRIN 2008



slot

slot input

slot output

slotted 
subcircuit

global 
outputglobal 

input

Quantum board

Problem: what is the optimal board for given slots achieving a global input/output 
task optimally according to a given cost function?

Quantum board



Quantum Combs
The circuits-boards can be reshaped in form of  a ”comb”, with an 
ordered sequence of  slots, each between two successive teeth

in−out

The pins in a quantum comb represent 
quantum systems, with generally variable 
dimensions, entering or exiting from the board



Choi representation of q-operation
The input-output quantum operation achieved by any quantum circuit is a CP map, and a 
suitable representation is provided by the one-to-one correspondence with a positive operator 
called ”Choi-Jamiolkowski operator”. 

2

R1�R2 ⇧⌃

|a⌥

⌃⇧���
. . . . . . . . . . . .

⌃⇧���
R1 �R2 �R3 ⇧⌃

Realization theorem.
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The Choi operator is the output state of the map applied locally to a maximally entangled 
reference state with suitable normalisation.



Causal networks
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To a comb we associate the Choi operator of  the quantum operation of  the causal network 
equivalent to the comb, with all inputs on the left and all outputs on the right



Choi representation
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Causality constraints: (N+1 inputs/outputs)

Tr2n+1

[

R(n)
]

=I2n ⊗ R(n−1), n = 0, 1, N,

R(N)
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= 1



Supermaps
A quantum comb performs a transformation that is a generalization of  the quantum operation: 
the so called ”supermap”

=
A supermap sends a series of  N channels to one channel. Mathematically it is represented by a 
completely positive N-linear map which sends N Choi operators to one Choi operator, and with 
his own Choi operator satisfying the causality constraints.



Supermaps
More generally, quantum combs map series of  channels into combs

=
or even more generally combs into combs

=



Supermaps
The notion of  supermap is the last level of  generalization, i.e. “super-
supermaps” (mapping supermaps to supermaps) are still supermaps = quantum combs.

=
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Choi-operator calculus



Circuits Architecture Optimization

in−out

The Choi operators of  a fixed  input-output comb structure make a convex set

G. Chiribella, GMD, P. Perinotti, Phys. Rev. Lett. 101 180501 (2008) 



Circuits Architecture Optimization

Causality constraints correspond to a hyperplane section of  the convex 

The border of  the section is the section of  the border, and extremals of  the 
section belong to the original border

in−out

The Choi operators of  a fixed  input-output comb structure make a convex set
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Group-covariance gives another linear constraint:

[R, Vg] = 0 =⇒ R =
⊕

j

Rj ⊗ 11mj
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Circuits Architecture Optimization
Generally the cost-function for optimisation is a 
concave function over the convex set of  Choi. 

The optimal combs are thus achieved upon 
minimising the cost-function over the set of  
extremal points.
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where 0 ≤ A = (d2 − 1)−1(
∑

i αiTr[(Ψi Ψ†
i )

2 ] − 1) ≤
(1/(d + 1)) < 1/2. The minimum can simply be determined
by derivation with respect to A, obtaining A = 1/(d2 + 1)
for quantum operations, A = 1/(

√
2(d2 − 1) + 2) for general

channels, and A = 0 for unital channels. The corresponding
minimum for the figure of merit is given by

ηQ ≥ d6 + d4 − d2

ηC ≥ d6 + (2
√

2 − 3)d4 + (5 − 4
√

2)d2 + 2(
√

2 − 1)

ηU ≥ (d2 − 1)3 + 1. (75)

The same result for quantum operations and for unital channels
has been obtained in [102] in a different framework.

These bounds are simply achieved by a single seed Π0 =
d|Ψ⟩⟩⟨⟨Ψ|, with

Tr[(ΨΨ†)2 ] =
2d

d2 + 1
,

√
2(d2 − 1) + 1 + d2

d(
√

2(d2 − 1) + 2)
,

1
d
(76)

for quantum operations, general channels, and unital channels,
respectively, namely with

Ψ = [d−1(1 − β)I + β|ψ⟩⟨ψ|]1/2 (77)

where β = [(d + 1)/(d2 + 1)]1/2 for quantum operations, β =
[(d + 1)/(2 +

√
2(d2 − 1))]1/2 for general channels, and β = 0

for unital channels, and |ψ⟩ is any pure state. The informational
completeness is verified if the operator

F =
∫

dgdh |Π0gh⟩⟩⟨⟨Π0gh | (78)

is invertible, namely (see [6]) if, for every i

⟨⟨Ψ|⟨⟨Ψ|Pi |Ψ⟩⟩|Ψ⟩⟩ ̸= 0 (79)

which is obviously true for Ψ defined in (77).
The same procedure can be carried on when the operator G

has the more general form G = g1P1 + g2P2 + g3P3 + g4P4 ,
where Pi are the projectors defined in (69). In this case, (71)
becomes

Tr[Ỹ −1G] = g1 + (d2 − 1)
(

g2

A
+

g3

B
+

(d2 − 1)g4

C

)
(80)

which can be minimized along the same lines as previously
followed. G has this form when optimizing measuring proce-
dures of this kind: 1) preparing an input state randomly drawn
from the set {UgρU †

g} and 2) measuring an observable chosen
from the set {UhAU †

h}. With the same derivation, but keeping
dim(H1) ̸= dim(H2), one obtains the optimal tomography for
general quantum operations. The special case of dim(H2) = 1
[one has P3 = P4 = 0 in (69)] corresponds to optimal tomogra-
phy of states, whereas case dim(H2) = 1 (P2 = P4 = 0) gives
the optimal tomography of POVMs.

3) Experimental Realization Schemes: We now show how
the optimal measurement can be experimentally implemented.
Referring to Fig. 3, the bipartite system carrying the Choi oper-
ator of the transformation is indicated with the labels S1 and S2 .
We prepare a pair of ancillary systems A1 and A2 in the joint

Fig. 3. Physical implementation of optimal quantum transformation tomog-
raphy. The two measurements are Bell’s measurements preceded by a random
unitary. The state |Ψ⟩⟩ depends on the prior ensemble.

state |Ψ⟩⟩⟨⟨Ψ|, and then we apply two random unitary transfor-
mations U1 and U2 to S1 and S2 ; finally, we perform a Bell
measurement on the pair A1S1 and another Bell measurement
on the pair A2S2 . This experimental scheme realizes the con-
tinuous measurement by randomizing among a continuous set
of discrete POVM; this is a particular application of a general
result proved in [104]. The scheme proposed is feasible using,
e.g., the Bell measurements experimentally realized in [103].
We note that choosing |Ψ⟩⟩ maximally entangled (as proposed,
for example, in [63]) is generally not optimal, except for the
unital case.

The experimental schemes for POVMs/states are obtained
by removing the upper/lower for branch quantum operations,
respectively. In the remaining branch, the bipartite detector be-
comes monopartite, performing a von Neumann measurement
for the qudit, preceded by a random unitary in SU(d). Moreover,
for the case of POVM, the state |Ψ⟩⟩ is missing, whereas, for
state tomography, both bipartite states are missing. The optimal
ηE ,G in (67) is given by η = d3 + d2 − d, in both cases (for state
tomography compare with [79]).
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Optimal cloning of unitaries

The existence of a no-cloning theorem immediately
raises the question about the performances of optimal
cloners. In addition to possible cryptographic applications,
the problem has a fundamental interest in itself, as the
relation (if any) between optimal cloning of transforma-
tions and cloning of states is not a priori obvious.

In this Letter we derive the optimal universal cloner,
which produces two approximate copies of a completely
unknown unitary gate in dimension d <1, showing that
entanglement with a quantum memory allows one to out-
perform any classical cloning strategy. For qubits the
global channel fidelity of the clones is Fclon¼ 46:65%,
significantly larger than the fidelity of the optimal
measure-and-prepare scheme Fest ¼ 31%, and of the ran-
dom guess (using the given unitary on the first system, and
performing a random unitary on the second) Fran¼ 25%.
Surprisingly, cloning of unitary gates has no relation with
cloning of maximally entangled states, in spite of the two
sets being commonly considered as equivalent. Not only
cloning maximally entangled states is always a suboptimal
step for cloning unitary gates, but also any other scheme
involving application of the unknown gate to a maximally
entangled state (or any other fixed state) is necessarily
suboptimal. As it will be shown, this also highlights a
fundamental difference between the two tasks of cloning
and learning quantum transformations.

The derivation of the optimal cloner exploits the recent
toolbox of quantum circuit architecture theory [14], which
allows optimization of quantum networks for any possible
manipulation of quantum channels, including cloning and
estimation. In this framework any channel C from SðH inÞ
to SðH outÞ [SðH Þ denoting states on H ] is described by
its Choi operator C ¼ C $ IðjIihIjÞ, where jIi ¼Pd

i¼1 jiijii is an unnormalized maximally entangled vector
in H in$H in. For a unitary channel Uð!Þ ¼ U!Uy, the
Choi operator is jUihUj, with jUi ¼ ðU $ IÞjIi. A quantum
network for N-to-M cloning is a network with N open slots
in which the N input copies are inserted, and is also
described by a suitable Choi operator RðNÞ (N ¼ 1 for
one-to-two cloning, see Fig. 1). If the Hilbert spaces of
the inputs are labeled with even numbers from 0 to 2N, and
the output spaces with odd numbers from 1 to 2N þ 1, the
Choi operator RðNÞ is a non-negative operator on the tensor
product

N2Nþ1
k¼0 H k satisfying the recursive normalization

condition

Tr 2Nþ1½RðNÞ' ¼ I2N $ RðN(1Þ; (1)

where Tr2Nþ1 denotes the partial trace over the Hilbert
space H 2Nþ1 of the N þ 1th output system, and RðN(1Þ is
the Choi operator of a network with N ( 1 open slots,
which in turn satisfies Eq. (1) with N replaced by N ( 1.
A network with N ¼ 0open slots is a quantum channel
from SðH0Þ to SðH 1Þ, and has the normalization
Tr1½Rð0Þ' ¼ I0. Inserting N channels C1; . . . ; CN in the N
slots of a network, we obtain a new channel C0 from
SðH0Þ to SðH 2Nþ1Þ, with Choi operator given by [14]

C0 ¼ Tr1;2;...;2N½ðI0$ C)
1 $ . . . $ C)

N $ I2Nþ1ÞRðNÞ': (2)

In one-to-two cloning (N ¼ 1) the first input H0 and
the last output H 3 must have a bipartite structure, H0¼
H0B $H0E andH 3 ¼ H 3B $H 3E, since the ultimate
aim of the network is to mimic the bipartite channelUB $
UE on Bob’s and Eve’s systems. Then, the normalization
of the Choi operator in Eq. (1) gives

Tr 3½Rð1Þ' ¼ I2 $ Rð0Þ; Tr1½Rð0Þ' ¼ I0: (3)

Inserting the gateU in the network, we obtain the bipartite
channel C0U, which according to Eq. (2) is given by C0

U ¼
Tr1;2½ðI0$ jU)ihU)j1;2 $ I3ÞRð1Þ'.
We derive now the cloning network for which the chan-

nel C0U most closely resembles UB $UE. As a figure of
merit we use the global channel fidelity, uniformly aver-
aged over the unknown unitaries

F ¼
Z

dU
1

d4
Tr½CUjUihUj$2'

¼ 1

d4

Z
dUhUjhUjhU)jRð1ÞjUijUijU)i: (4)

Note that F ¼ 1 if and only if CU ¼ U$2 for any U,
corresponding to perfect cloning. Exploiting symmetry
then provides a radical simplification of the problem:
Lemma 1. The optimal cloning network maximizing

the channel fidelity (4) can be assumed without loss of
generality to be covariant, i.e., with a Choi operator Rð1Þ

satisfying the commutation relation

½Rð1Þ; V$2
0 $ V)

1 $W)
2 $W$2

3 ' ¼ 0 8 V;W 2 SUðdÞ:
(5)

Proof. Let Rð1Þ be optimal. Then take its average Rð1Þ ¼R
dV

R
dWV $2

0 $V )
1 $W )

2 $W $2
3 ðRð1ÞÞ, where V ,

V ), W ), W are the unitary channels corresponding to

FIG. 1. (a) One-to-two cloning of unitaries. Two input systems
are first processed by Eve with channel A, which entangles
system 1 and a quantum memory M. While the memory M is
kept by Eve, system 1 is sent to Alice, who applies the secret
gate U, and sends back output 2. Then, Eve applies the channel
B, producing two output systems, so that the overall trans-
formation from inputs to outputs optimally emulates U$2.
(b) One-to-two quantum learning of unitary. In a training phase,
the example U is applied locally on the bipartite state ", and
stored in the state "U ¼ ðU $ IÞ"ðUy $ IÞ. Then, two input
systems interact with "U, undergoing a transformation that
optimally emulates U$2.
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FIG. 1. The learning process is described by a quantum comb (in
white) representing the storing board, in which the N uses of a unitary
U are plugged, along with the state |ψ⟩ (in gray). The wires represent
the input-output Hilbert spaces. The output of the first comb is stored
in a quantum memory, later used by the retrieving channel R.

enough to apply the available examples in parallel on a suitable
entangled state, (ii) the optimal state for storage has the same
form of an optimal state for estimation of the unknown unitary,
and (iii) the optimal retrieval can be achieved via estimation
of the unknown unitary, namely by measuring the quantum
memory, producing an estimate for the unknown unitary and,
finally, applying the estimate M times.

A. The M = 1 case

We tackle the optimization of learning starting from the
case where a single output copy is required. Referring to Fig. 1,
we label the Hilbert spaces of quantum systems according to
the following sequence: (H2n+1)N−1

n=0 are the inputs for the N

examples of U , and (H2n+2)N−1
n=0 are the corresponding outputs.

We denote by Hi =
⊗N−1

n=0 H2n+1 (Ho =
⊗N−1

n=0 H2n+2) the
Hilbert spaces of all inputs (outputs) of the N examples. The
input state |ψ⟩ belongs to H2N+2, and the output state finally
produced belongs to H2N+3. All spaces Hn considered here
are d-dimensional, except the spaces H0 and H2N+1 which
are one-dimensional and are introduced just for notational
convenience. The comb of the whole learning process is an
operator L ! 0 on the tensor of all Hilbert spaces and satisfies
the normalization condition [9,10]:

Tr2k+1[L(k)] = I2k ⊗ L(k−1) k = 0, 1, . . . , N + 1, (6)

where L(N+1) = L, L(−1) = 1, and L(k) is a positive operator
on the spaces (Hn)2k+1

n=0 . When the N examples are connected
with the learning board, the user obtains a channel CU with
Choi operator given by

CU = L ∗ |U ⟩⟩⟨⟨U |⊗N

= Tri,o[L(I2N+3 ⊗ I2N+2 ⊗ (|U ⟩⟩⟨⟨U |⊗N )T )], (7)

as it follows from the definition of link product in Eq. (4).
As the figure of merit we maximize the fidelity of the

output state CU (|ψ⟩⟨ψ |) with the target state U |ψ⟩⟨ψ |U †,
uniformly averaged over all input pure states |ψ⟩ and all
unknown unitaries U in the group G. Apart from irrelevant
constants, such optimization coincides with the maximization
of the channel fidelity between CU and the target unitary (i.e.,
the fidelity between the Choi-Jamiołkowski states CU/d and
|U ⟩⟩⟨⟨U |/d) averaged over U :

F = 1
d2

∫

G

Tr{L[|U ⟩⟩⟨⟨U | ⊗ (|U ⟩⟩⟨⟨U |⊗N )T ]} dU

= 1
d2

∫

G

⟨⟨U |⟨⟨U ∗|⊗NL|U ∗⟩⟩⊗N |U ⟩⟩ dU, (8)

U ∗ being the complex conjugate of U in the computational
basis, and dU denoting the normalized Haar measure. From

the expression of F it is easy to prove that there is no loss of
generality in requiring the commutation

[L,U2N+3 ⊗ V ∗
2N+2 ⊗ (U ∗ ⊗ V )⊗N ] = 0 ∀U, V ∈ G.

(9)

Moreover, using Eq. (6) for k = N + 1 we obtain
TrH2N+3 [L] = I2N+2 ⊗ L(N), where L(N) is a positive operator
acting on

⊗2N+1
n=0 Hn (recall that, however, H0 and H2N+1 are

one-dimensional). Reordering the Hilbert spaces in the tensor
product by putting all input spaces of the examples on the right
and all output spaces on the left and using Eq. (9) we then get

[
L(N), U ∗⊗N

o ⊗ V ⊗N
i

]
= 0 ∀U, V ∈ G. (10)

Here the subscripts i, o recall that U⊗N acts on the tensor prod-
uct of all output spaces Ho =

⊗N−1
n=0 H2n+1, while V ⊗N acts

on the tensor product of all input spaces Hi =
⊗N−1

n=0 H2n+1.
This leads to the following.

Lemma 1 (optimality of parallel storage). The optimal
storage of U can be achieved by applying U⊗N

o ⊗ I⊗N
i on

a suitable input state |ϕ⟩ ∈ Ho ⊗ Hi .
Proof. According to Fig. 1, the learning board L re-

sults from the connection of the storing board S with
the retrieving channel R. In terms of the correspond-
ing Choi-Jamiołkowski operators L, S,R, respectively, one
has L = R ∗ S. Denoting by HM the Hilbert space of
the quantum memory in Fig. 1, we have that R is a
channel from (H2N+2 ⊗ HM ) to H2N+3 and satisfies the
normalization condition I2N+3 ∗ R = I2N+2 ⊗ IM . Using this
fact, one gets Tr2N+3[L] ≡ I2N+3 ∗ L = (I2N+3 ∗ R) ∗ S =
(I2N+2 ⊗ IM ) ∗ S = I2N+2 ⊗ TrM [S], which compared with
Eq. (6) for k = N + 1 implies TrM [S] = L(N). Now, without
loss of generality we take the storing board S to be a
sequence of isometries [9,10], which implies that S is rank
one: S = |#⟩⟩⟨⟨#|. With this choice, the state S/dN is a
purification of L(N)/dN . Again, one can choose w.l.o.g. S/dN

to be a state on (Ho ⊗ Hi) ⊗ (H′
o ⊗ H′

i), with H′
o ≃ Ho and

H′
i ≃ Hi and assume |#⟩⟩ = |L(N) 1

2 ⟩⟩. Taking V = I in Eq.
(10) and using Eq. (2) we get (U⊗N

o ⊗ Ii,o′,i ′)|#⟩⟩ = (Io,i ⊗
UT

o′
⊗N ⊗ Ii ′ )|#⟩⟩. When the examples of U are connected to

the storing board, the output is the state ρU = S ∗ |U ⟩⟩⟨⟨U |⊗N
o,i .

Using the above relation we find that ρU is the projector on
the state |ϕU ⟩ = (U⊗N

o′ ⊗ Ii ′ )|ϕ⟩, where |ϕ⟩ = ⟨⟨I⊗N |o,i |#⟩⟩ ∈
Ho′ ⊗ Hi ′ ≃ Ho ⊗ Hi . This proves that every storing board
gives the same output that would be obtained with a parallel
scheme. In other words, every storing board can be simulated
applying (U⊗N

o ⊗ I⊗N
i ) to a suitable input state |ϕ⟩ ∈ Ho ⊗

Hi . "
Optimizing learning is then reduced to finding the optimal

input state |ϕ⟩ and the optimal retrieving channel R. The
fidelity can be computed substituting L = R ∗ S in Eq. (8) and
using the relation ⟨⟨U |⟨⟨U ∗|⊗N (R ∗ S)|U ⟩⟩|U ∗⟩⟩⊗N = ⟨⟨U |R|
U ⟩⟩ ∗ ⟨⟨U ∗|⊗NS|U ∗⟩⟩⊗N = ⟨⟨U |R|U ⟩⟩ ∗ |ϕU ⟩⟨ϕU |, which gives

F = 1
d2

∫

G

⟨⟨U |⟨ϕ∗
U |R|U ⟩⟩|ϕ∗

U ⟩dU. (11)

032324-3
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Quantum Theory is an OPT

Quantum Theory: the “grammar” of Physics
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An OPT is an Information Theory
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Quantum Theory as OPT

system A HA (1)

system composition AB HAB = HA ⌦HB

transformation T 2 Transf(A ! B) T 2 CP(T(HA)! T(HB)) (2)

Theorems

trivial system system I HI = C
deterministic transformation T 2 Transf1(A ! B) T 2 CP=(T(HA)! T(HB)) (2)

states r 2 St(A)⌘ Transf(I ! A) r 2 T
+
1
(HA) (3)

r 2 St1(A)⌘ Transf1(I ! A) r 2 T
+
=1
(HA) (3)

r 2 St(I)⌘ Transf(I ! I) r 2 [0,1]

r 2 St1(I)⌘ Transf(I ! I) r = 1

effects e 2 Eff(A)⌘ Transf(A ! I) e(·) = TrA[·E], 0  E  IA (4)

e 2 Eff1(A)⌘ Transf1(A ! I) e = TrA (4)

Notation

(1) H Hilbert space over C
(2) Transf(A ! B) set of transformations from system A to system B

T(H ) trace-class operators over H

CP trace-non increasing completely positive map

CP= trace-preserving completely positive map

(3) St(A) set of states of system A

St1(A) set of deterministic states of system A

T
+(H ) trace-class positive operators over H

Bnd
+(H ) bounden positive operators over H

T
+
1
(H ) positive sub-unit-trace operators over H

T
+
=1
(H ) positive unit-trace operators over H

(4) Eff(A) set of effects of system A

Corollaries

composition of transformations: parallel T1 ⌦T2, sequential T2T1

T(C) = C, T
+(C) = R+

, T
+
1
(C) = [0,1], T

+
=1
(C) = {1}

CP(T(H )! T(C)) = P(T(H )! T(C)) (Choi-Jamiolkowski)

CP(T(C)! T(H )) = P(T(C)! T(H )) (Choi-Jamiolkowski)

CP(T(C)! T(H ))⌘ T
+
1
(H ), CP(T(H )! T(C))⌘ {e(·) = Tr[·E], E 2 Bnd

+(H )}

G. M. D’Ariano, Dec. 22th 2018
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Other OPTs
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Appendix B: Comparing OPTs

QT: Quantum theory

CT: Classical theory

FQT: Fermionic quantum theory

RQT: Real quantum theory

NSQT: Number superselected quantum theory

PR: PR-boxes theory

DPR: Dual PR-boxes theory

HPR: Hybrid PR-boxes theory

FOCT: First order classical theory

FOQT: First order quantum theory

NLCT: Non-local classical theory

NLQT: Non-local quantum theory

Caus. Perf. disc. Loc. discr. n-loc. discr. At. par. comp. At. seq. comp. Compr. 9 Purification 9! Purification NIWD

QT 3 3 3 3 3 3 3 3 3 3

CT 3 3 3 3 3 3 3 7 7 7

QBIT 3 3 3 3 3 3 7 3 3 3

FQT 3 3 7 3 3 3 7 3 3 3

RQT 3 3 7 3 3 3 3 3 3 3

NSQT ? ? 7 7 ? ? ? ? ? ?

PR 3 ? 3 3 3 ? 7 7 7 3

DPR 3 ? 3 3 3 ? 7 7 7 3

HPR 3 ? 3 3 3 3 3 3 3 3

FOCT 7 ? 3 3 3 ? ? 7 7 ?

FOQT 7 ? ? 3 ? ? ? ? ? ?

NLCT 3 3 7 3 7 ? 3 7 7 7

NLQT ? ? ? 3 ? ? ? ? ? ?

Table I. Comparison of known OPTs

Definition 19. A theory is no-cloning if for some state ⇢ there is no transformation C such that

C =  ⌦  , 8 2 D⇢. (B1)

Proposition 9. A theory is no-information-without-disturbance upon input of D⇢ i↵ it is no-cloning for ⇢.
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QUANTUM FIELD THEORY: an ultra-short account

“HOW TO GET THE “MECHANICS?” 
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