Fermi-LAT sensitivity to the gravitational wave follow-up

Work done for the Masters Thesis University of Turin, Department of Physics

Lorenzo Scotton - Graduate student CNRS/IN2P3/LUPM and University of Montpellier

Thesis target

Determine the Fermi-LAT sensitivity to the follow-up of gravitational waves (GWs):

- 1) realize a **procedure that can be employed to any GW event** and that produces the sensitivity map of Fermi-LAT;
- 2) determine the **trial factor** involved in the search of the counterpart, motivating an **optimization of the search**.

All-sky map produced by Fermi-LAT – galactic coordinates.

GRB Group Meeting – December 5th, 2019

Lorenzo Scotton

Follow-up with Fermi-LAT

- Multi-messenger observations: comprehensive description of compact binary object mergers and • **GRBs**:
- **Pipeline** follow-up of GW events: ٠
 - uniform scanning of all the localization region;
 - in case of non-detection: flux upper bounds! ٠

Part 1: Fermi-LAT sensitivity to a GW event

I realized a **procedure** to determine the **Fermi-LAT sensitivity** to a **GW event**. Case of study - LIGO/Virgo event G299232:

• time of trigger:

t_{gw} = 2017-08-25, 13:13:37 UTC;

• localization region (90% c.l.): 2363.451 deg^2 .

Data selection and grid preparation

- Fermi-LAT data (photons and spacecraft files) in a time window of 10ks starting at t_{αw};
- Grid of 44 equispaced pixels grid resolution $n_{side} = 8$ in the HEALPix format.

HEALPix map for the localization region, $n_{side} = 8$.

Simulations

Model – as in standard Fermi-LAT simulations.

1. Point and extended sources:

e.g. Pulsars, Active Galactic Nuclei, Supernovae Remnants.

 $\begin{array}{rll} \text{dust} & \\ \text{cosmic rays +} & \text{gas} & \rightarrow \gamma\text{-rays.} \\ & \\ \text{radiation field} \end{array}$

3. Isotropic residual emission:

extra-galactic sources, charged particles misclassified as γ rays;

4. GRB:

- spectrum dN/dE \propto E⁻²;
- simulated into each point of the grid, for different fluxes and seeds:

→ 44 (positions) x 20 (fluxes) x 20 (seeds) = 17600 simulations [10⁻¹⁰, 10⁻⁷] erg/cm⁻²/s⁻¹ Probabilistic nature of the response of the LAT to an incoming photons flux.

Analysis

Standard Fermi-LAT analysis: unbinned likelihood, log-ratio test to determine the significance of the GRBs.

1. Likelihood *L* that the model *M* realizes the data:

binned
$$L = e^{-N_{exp}} \prod_{i} \frac{m_i^{n_i}}{n_i!}$$
 — unbinned $L = e^{-N_{exp}} \prod_{i} m_i$

- n_i : number of events measured in the bin i;
- m_i : number of events expected in the bin *i* from *M*;
- $N_{exp} = \Sigma m_i$: total number of events expected from *M*.

2. Test Statistic TS :

$$TS = -2\ln\frac{L_0}{L_1}$$

- L₀ : likelihood of the null-hypothesis (model: only background);
- L_1 : likelihood of the alternative hypothesis (model: background plus GRB).

TS = 25 corresponds roughly to the detection (5 σ criterion).

For each pixel of the grid:

- TS is an increasing function of the GRB flux;
- TS is averaged over the seeds: error bars;
- flux so that the GRB is detected with TS = 25.

TS vs flux

3 different positions on the grid.

Sensitivity map

Gamma-ray sky

Check:

• the sensitivity decreases near the galactic disk \rightarrow consistent with higher galactic background.

Check:

• the sensitivity flux is always greater than the flux upper bound \rightarrow consistent with Fermi-LAT non-detection.

This procedure was **successfully tested** also for the LIGO/Virgo event S190426c.

Part 2: Trial Factor

S190408an 1. Scanning the entire localization region of the GW event: 75° 60° \rightarrow typically several hundreds of trials 45° (1871 trials for S190408an, n_{side} = 128). 30° [q] $1 \text{ pixel} \rightarrow 1 \text{ trial}$ **Gal latitude** -90° -120° -150° 0° 2. More likely a large excess due to statistical fluctuations of the background: -15° \rightarrow threshold TS_{thr} @ detection has to be recalibrated; -30° \rightarrow the more you look, the less you find . -45° -60° -75° Gal longitude [I] Correlated trials Independent trials 3. Near ROIs are overlapped: radius = $8 \deg$ \rightarrow the trials are not independent; \rightarrow number of effective trials n_{eff}; ROI \rightarrow no theoretical expectation for TS_{thr} . 0

Strategy

I determined the TS_{thr} following this strategy:

- 1. LIGO/Virgo event S190408an (BBH);
- 2. 10k simulations of the photons file, only background;
- 3. **likelihood analysis** in two grids (grid resolution $n_{side} = 64$, 128);

4. number of *effective* trials \mathbf{n}_{eff} :

Localization region of S190408an – equatorial coordinates (credit LIGO/Virgo Collaboration).

 $p' = 1 - (1 - p)^{n_{eff}}$ \blacksquare Bonferroni/Šidák correction for multiple tests

where:

- *p* : probability density function (pdf) of the *TS* for one trial;
- p' is the pdf of the TS_{max} for n_{eff} trials;

List of the maximum TS in the localization region, over all the simulations.

5. threshold **TS**_{thr} corresponds to **p-value = 2.86 x 10**⁻⁷ (5 σ criterion) :

$$\int_{TS_{thr}}^{\infty} p' dx = 2.86 \times 10^{-7}$$

I determined the **number of effective trials n**_{eff} for circular **areas with different radius**.

ROIs overlapped \rightarrow trials correlated.

The number of effective trials n_{eff} is smaller than the number of trials in absence of correlation:

 \rightarrow the correlation reduces the number of trials.

No correlation (independent trials)

Effect of the correlation

Threshold of the detection TS_{thr}:

- TS_{thr} scales with the dimension of the area until a plateau;
- limit the search to small areas in order to have the lowest TS_{thr}:
 - $\rightarrow\,$ determine a quantitative criterion to define the optimal region of the search;
 - $\rightarrow\,$ in case of non-detection, increase the area.

Intensity of the color proportional to the probability to localize the GW event

Threshold of the detection

GRB Group Meeting – December 5th, 2019

Lorenzo Scotton

Conclusion

I determined the sensitivity of Fermi-LAT to the follow-up of gravitational waves.

1. Procedure to map the sensitivity flux to any GW event.

 \rightarrow Future prospect : automate the procedure into a pipeline triggered by LIGO/Virgo alerts.

- 2. Threshold of detection TS_{thr} scales with the area of the search.
 - \rightarrow Future prospect :
 - → prioritize the search: limited to LIGO/Virgo hot spots (see Nicola's contribution to the Fermi-LAT Collaboration Meeting at Santa Cruz, fall 2019);
 - \rightarrow determine a quantitative criterion to define the hot spots.

A <u>special thank</u> to: Raffaella Bonino Luca Latronico Nicola Omodei