

Cryogenics by use of 4 K Pulse Tube Cryocoolers

Guenter Thummes

Institute of Applied Physics, University of Giessen, Germany and

TransMIT-Center for Adaptive Cryotechnology and Sensors
TransMIT GmbH, Giessen, Germany

Outline

- Short overview: PTC development in Giessen
- Status of two-stage 4 Kelvin PTCs
- Examples of applications (He-liquefaction, magnet cooling,)
- Low-temperature limit of PTCs (3 He-PTC with $T_{min} = 1.27 K$)
- Cooler-induced vibrations and vibration decoupling
- (Powerful single-stage PTC)
- (Possible problems: -- Orientation dependence of performance
 - -- Intrinsic temperature oscillations)

Pulse tube development in Giessen since 1993

2-stage PTCs for LHe-temperatures

1-stage PTCs for cooling at 25-100 K

PTS2530 200 mm

Input power: 2 – 10 kW

Cooling power:

0.2 – 1.1 W @ 4.2 K

Input power: 2 – 12 kW

Cooling power:

80 W @ 50 K (6 kW)

30 W @ 80 K (2 kW)

1-stage Stirling-type PTCs f = 40 - 60 Hz

With 50 - 200 W linear compressors
Cooling power: 0.2 - 8 W @ 80 K

With 10 kW linear compressor Cooling power: 350 W @ 80 K

Additionally, under development: 2-stage STPTC versions for cooling below 20K ET-Workshop, Jena 03/2010

Working principle of a PTC

Schematic of single-stage PTC

Ideal cooling power

$$\dot{Q}_{c,ideal} = f \oint_{Gas 1} pdV = \frac{1}{2} \hat{V}_1 \hat{p} \cos\theta$$

for ideal gas and harmonic p(t)

Adjustment of phase angle θ by use of :

- -- Orifice + Buffer volume (Moscow 1984)
- -- 2nd inlet *(Xian 1990)*: 2nd inlet reduces "useless" mass flow through regenerator!

Net Cooling Power

$$\dot{Q}_{c} = \dot{Q}_{c,ideal} - \dot{Q}_{Losses}$$

- Regenerator losses (heat capacity, heat transfer, pressure drop)
- Gas mixing in pulse tube
- Heat conductance, radiation

Regenerator losses increase with $(T_h-T_c) \rightarrow$ multistage PTC needed for cooling below 10 K!

Regenerator materials

Efficient regenerator \rightarrow C_{Matrix} >> C_{Gas} must be valid.

Conventional regenerator materials for $T_c > 15 \text{ K}$

Material geometry:

-- Screens -- Spheres (lead)

Rare Earths materials for 4 K (since 1989)

Material geometry: spheres or granules $\phi \approx 0.2 \text{ mm}$

"History" of GM-type PTCs

Record low-temperatures:

1-stage PTCs

12.9 K (Giessen 2002)

11.1 K (Hangzhou 2007)

2-stage PTCs

2.23 K, ⁴He (Giessen 1996)

1.27 K, ³**He** (*Giessen 2003*)

3-stage PTCs

3.6 K (Y. Matsubara, 1993)

2.07 K (Giessen 1996)

1.78 K, ³He (Eindhoven 1999)

First 2-stage 4 K PTC (Giessen 1996)

4 K PTC Optimization

• Pressure waveform (Timing of r.v.)

T = 4 K, f = 1 Hz, Δp = 12 bar, 6 kW-compressor

- -- pV-power
- -- DC-flow

 Control of unidirectional flow ("DC-flow") through 2nd inlet

$$\dot{m}_{DC} \sim \langle p_1 - p_2 \rangle$$

Improper DC-flow introduces high heat load to the cold stage!

→ Use of needle valve arrangement with <u>adjustable flow symmetry</u>

Current 2-stage 4 K PTC (Giessen)

HP- and LP-Connections

"Split-Design"

Flexible pressure line (0.5 – 1 m)

- → Reduction of vibrations from rotary valve
- → Makes possible the positioning of the rotary valve in low stray field (< 20 mT)</p>

Cooling Load Map of PTD406

Cooling Load Map of PTD406c

Giessen 2007

PTD406c: concentric cold platforms

Phase shifters optimized for high cooling power at 1st stage → increased cooling power at 1st stage 30 W @ 61.5 K and 750 mW @ 4.2 K with P_{in} = 6.0 kW

4 K PTC with 10 kW compressor (PTD 411)

Giessen 2006

PTD411: increased tube diameters

Cool down to 4.2 K ≈ 1 h

 $Q_2 = 1.0 \text{ W} @ 4.07 \text{ K} \text{ and } Q_1 = 30 \text{ W} @ 53 \text{ K}$ with $P_{in} = 9.5 \text{ kW}$

"Small" 4 K PTC with 2 kW compressor (2008)

PTD 4200

Cold head volume ≈ 0.6 × cold head volume of PTD406

Simultaneous cooling powers:

200 mW @ 4.16 K and 1.0 W @ 55.6 K with 2 kW electric input (air-cooled compressor)

(PTD4200 with 4 kW compressor → next table)

Performance data of TransMIT 4 K PTCs

Model	P _{in} (steady state)	Typical cooling power	T _{min}	Cool down to 4.2 K *)
PTD4200	2.0 kW	0.21 W @ 4.2 K 1 W @ 56 K	< 3.0 K	< 120 min
PTD4200-4kW	3.8 kW	0.45 W @ 4.2 K 10 W @ 53 K	< 2.6 K	< 75 min
PTD404	3.8 kW	0.6 W @ 4.2 K 10 W @ 53 K	< 2.5 K	< 75 min
PTD406	5.7 kW	0.7 W @ 4.2 K 10 W @ 49 K	< 2.4 K	< 65 min
PTD406c**)	6.0 kW	0.75 W @ 4.2 K 20 W @ 52 K	< 2.5 K	< 65 min
PTD411	10 kW	1.1 W @ 4.2 K 30 W @ 53 K	< 2.4 K	< 65 min

^{**)} Prototype with 6 L-Buffer volume at LP-side of compressor

^{*)} With standard copper radiation shield installed

Some other commercial 4 K PTCs

Coefficient Of Performance of 4 K GM- and PT-Coolers

Some Applications of 4 K PTCs (Giessen)

- Small scale Helium-liquefaction (0.15 L/h, 1997)
 (0.3 0.7 L/h, 2005)
- "Dry" superconducting magnet cooling
 - 3 T (120 A) Nb₃Sn-magnet → First PT-cooled SC-magnet (1998)
 - 5.5 T NbTi-magnet with persistent mode switch (2002)
 - 5 T NbTi-magnet with top-loading system (2007)
- "Dry" cooling of Josephson voltage standards (since 2002) Co-operation with: IPHT Jena, PTB Braunschweig
- "Dry" precooling of sub-Kelvin cooling stages
 - ADR with 5 T NbTi-magnet (2000) → T_{min} = 96 mK (with CSP, Ismaning)
 - Miniature ³He/⁴He-dilution refrigerator with T_{min} = 50 mK Co-operation with: Institute of Applied Photonics e. V., Berlin (2006)

First small-scale He-liquefier with PTC (Giessen 1997)

Current He-liquefier with PTC (Giessen 2005)

- Operation of cold head in He-gas!
- 6 kW compressor (Leybold CP6000)
- Helium inlet through capillary:
- → liquefaction rate: 0.50 L/h
- Free inlet of helium gas:
 - → liquefaction rate: 0.46 L/h
 - → Rather efficient precooling already by contact of the gas with the cold head parts
- Disadvantage of capillary: Risk of plugging by the freezing of gas impurities!

"Dry" Cryostat with 5 T Magnet and Top-loader

Giessen 2006-2007

φ. 52 mm Sample stick top-loading insert **Gate valve**

User: IMS, University of Karlsruhe

- Cooldown time to 4 K: 7 hours (Extra mass ≈ 8 kg)
- Base temperature with sample holder inserted: 3 K
- Magnet sweep to 5 T: 7 min
- Changing of samples and cooling back to 4 K within < 2 hours

Low-noise cooling Josephson voltage standards

1 V and 10 V Josephson voltage standards

Application: Primary voltage standards in industry and metrological institutes

Autonomous Mini Dilution Refrigerator with 4 K PTC

Institute of Applied Photonics e.V. Berlin (2005)

³He-sorption pump

 $T_{2,PTC} = 2.46 \text{ K (PTD404 with 4 kW compressor)}$

Precooling of the ³He-⁴He-stage only by PTC (2.46 K) and one ³He-sorption stage (0.4 K)

³He condenser of DR: 0.4 K

³He-evaporator of ³He sorption stage

Mixing chamber: 50 mK

Still 0.7 K
-Continuous HX

Low-temperature limit of PTCs?

Phase diagrams and $\alpha_v = 0$ - line for ⁴He und ³He

Dynamic T-oscillation in He-gas (adiabatic):

$$\Delta T = \frac{\alpha_{v}}{\sqrt{\rho c_{p}}} \Delta p$$

$$\Delta T \rightarrow 0 \text{ for } \alpha_{v} \rightarrow 0$$

Cooling power \rightarrow 0 for $\Delta T \rightarrow 0$

Conclusions:

- * λ-line cannot be reached with 4 He, since $\alpha_{v} = 0$ for $T > T_{\lambda}$!
- With ³He, temperatures well below 2 K could be achieved.

Problem: Regenerator efficiency below 2 K

 α_v = Volume expansion coefficient

PTC with ³He-stage

Lab model: 2-stage PTC with separate gas circuits (Giessen 2003)

24

2nd stage: 2 kW-compressor

Vibrations of 4 K PTCs: PTD406 (6 kW)

Acceleration-spectra of PTD406, f = 1.5 Hz, 6 kW-compressor, Δp = 13 bar, $T_2 \approx 0$ °C

Origin: Elastic deformation of the stainless steel tubes due to pressure oscillation

$$\Delta$$
L/L ~ E⁻¹ (r/s) Δ p

r = tube radius s = wall thickness

Displacement from residual vibrations (6 kW)

Diplacement-spectra of PTD406, f = 1.5 Hz, 6 kW-compressor. $\Delta p = 13 \text{ bar}$. $T_0 \approx 0 ^{\circ}\text{C}$

Further reduction of vibrations:

- by increasing the wall thickness s of the tubes: $\Delta L/L \sim E^{-1} (r/s) \Delta p$
- by decreasing the compressor input power, i.e. Δp
- by mechanical decoupling of the cold platform

(all measures at the cost of available cooling power!)

6 kW compressor:

 $x : \pm 16 \mu m$ (background?)

 $y : \pm 1.8 \mu m$

 $Z : \pm 6.7 \, \mu m$

Displacement-spectra of PTD4200 (2 kW and 4 kW)

Damping of vibrations: small 1-stage PTC

Giessen 1999

Displacement Δz (μm)

1-stage PTC for HTS-SQUID cooling:

Titanium tubes: $\Delta z = 5 \mu m$ at cold platform

 $\rightarrow \Delta z < 1 \mu m$ with vibration reduction

at typical operating condition of $\Delta p = 7$ bar

Damping of vibrations: small 1-stage PTC

Giessen 1999

YBCO-rf-SQUID (FZ Jülich)

LN2 (77 K): 45 fT/√Hz above 100 Hz

PTC (70 K): white noise 35 fT/√Hz

Advanced vibration isolation for 4 K PTCs (CLIO-100)

Center

"Vibration-free" 4 K PTC for CLIO, T. Tomaru et al., Cryocoolers 13 (2004), p. 695

- Y. Matsubara, WEH-Workshop "Applied Cryoelectrics" (2006)
- Y. Ikushima et al. , Cryogenics <u>48</u> (2008) p. 406

Vibration reduction of Sumitomo 4 K PTC

Y. Ikushima et al., Cryogenics <u>48</u> (2008) p. 406 R. Li et al., Cryocoolers 13 (2004), p. 695

4 K PTC: Sumitomo SRP-052A (7 kW compressor)
0.5 W @ 4.2 K and 20 W @ 42 K
with 40 cm line from rotary valve to cold head

Remark: A PTC system with active vibration compensation was built and tested by the group of Fulvio Ricci (Rome)

Vibration of Sumitomo 4 K PTC

R. Li et al., Cryocoolers 13 (2004), p. 695 and Y. Ikushima et al., Cryogenics 48 (2008) p. 406

Displacements of 2nd stage with vibration isolation:

Requirement of amplitude < 1 µm for CLIO fulfilled

Flexible heat links	X	у	z
OFHC-Cu	±1.2 μm	±1.5 µm	±0.2 μm
High-purity Al	±0.2 μm	±0.1 µm	±0.02 μm

Summary

- Nowadays, 4 K PTCs have proven to be reliable cryocoolers with low intrinsic vibration level.
- Cooling powers range from 200 mW to more than 1 W @ 4.2 K
- By use of special set-ups for vibration isolation the residual vibration amplitudes can be reduced to a "tolerable" level of
- < 1 μ m, as shown for example by the Cryogenics Group of CLIO-100.

Present scientific/technical staff at "Low Power Cryocooler Group" of IAP and of TransMIT-Center:

Kai Allweins Benjamin Blenn Marc Dietrich Andreas Euler Yusuf Kücükkaplan Günter Thummes