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Outline

• Short overview: PTC development in Giessen 

• Status of two-stage 4 Kelvin PTCs

• Examples of applications (He-liquefaction, magnet cooling, ….)

• Low-temperature limit of PTCs (3He-PTC with Tmin = 1.27 K )

• Cooler-induced vibrations and vibration decoupling

• (Powerful single-stage PTC)

• (Possible problems: -- Orientation dependence of performance

-- Intrinsic temperature oscillations)
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Pulse tube development in Giessen since 1993
Gifford-McMahon (GM)-type PTCs 1-stage Stirling-type PTCs

f = 1 - 2 Hz f = 40 - 60 Hz

1-stage PTCs for
cooling at 25-100 K

200 m
m

PTS2530

Input power: 2 – 12 kW
Cooling power:
80 W @ 50 K (6 kW)
30 W @ 80 K (2 kW)

With 10 kW linear compressor
Cooling power: 350 W @ 80 K   

75 m
m

SL400

With 50 - 200 W linear compressors
Cooling power: 0.2 – 8  W @ 80 K

50
0 

m
m

2-stage PTCs for
LHe-temperatures

Input power: 2 – 10 kW
Cooling power:
0.2 – 1.1 W @ 4.2 K

m = 94 kg

Additionally, under development: 2-stage 
STPTC versions for cooling below 20K
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Working principle of a PTC

Schematic of single-stage PTC
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"Gas piston"
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Pulse tube

Gas 1

Adjustment of phase angle  θ by use of :

-- Orifice + Buffer volume (Moscow 1984)

-- 2nd inlet (Xian 1990): 2nd inlet reduces
"useless" mass flow through regenerator!

Net Cooling Power

  Q -QQ Lossesidealc,c
&&& =

Ideal cooling power 

cosθ p̂ V̂
2
1pdVfQ 1

1 Gas
idealc,

&& == ∫
for ideal gas and harmonic p(t)

• Regenerator losses (heat capacity, heat transfer, pressure drop)   

• Gas mixing in pulse tube

• Heat conductance, radiation

Regenerator losses increase with (Th-Tc)
multistage PTC needed for cooling below 10 K !

  Q -QQ Lossesidealc,c
&&& =

  Q -QQ Lossesidealc,c
&&& =
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Regenerator materials
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Conventional regenerator materials for Tc > 15 K

Material geometry:
-- Screens    -- Spheres (lead)

Efficient regenerator CMatrix >> CGas must be valid.

Rare Earths materials for 4 K (since 1989)

Material geometry:
spheres or granules φ ≈ 0.2 mm
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"History" of GM-type PTCs

Record low-temperatures:

1-stage PTCs

12.9 K  (Giessen 2002)

11.1 K (Hangzhou 2007)

2-stage PTCs

2.23 K, 4He (Giessen 1996)

1.27 K, 3He (Giessen 2003)

3-stage PTCs

3.6 K (Y. Matsubara, 1993)

2.07 K (Giessen 1996)

1.78 K, 3He (Eindhoven 1999)  

TU Eindhoven 2004
U Giessen 2007
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 2-stage PTC
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First 2-stage 4 K PTC (Giessen 1996)

T2,min = 2.23 K, Q2 = 370 mW @ 4.2 K  with Pin ≈ 6 kW

PT 1

PT 2

Buffer volumes

NV

Reg 1

Pb
ErNi

ErNi0.9Co0.1

RW 6000

Compr.

Rotary valve

f = 1.0 Hz
320 m

m

"Sandwich" filling of 
regenerator

Radiation shield

Rotary valve
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4 K PTC Optimization

• Pressure waveform (Timing of r.v.)

Time

Intake

Exhaust

Dead time

0.0 0.5 1.0 1.5 2.0
6

8

10

12

14

16

18

20

22

24

Filling pressure: 16.5 bar
Frequency: 1.0 Hz, Δp = 12 bar
Com pressor: CP 6000
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 (b
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)

T im e (s)

T =  4 K, f = 1 Hz, Δp = 12 bar, 6 kW-compressor

• Control of unidirectional flow ("DC-flow")
through 2nd inlet

DCm&

Compressor
R.V.

mDC ∼ <p1-p2>
.

p1(t)p2(t)

DCm&

Compressor
R.V.

DCm& DCm&

Compressor
R.V.

mDC ∼ <p1-p2>
.
mDC ∼ <p1-p2>
.

p1(t)p2(t)

Improper DC-flow introduces high heat load
to the cold stage !

Use of needle valve arrangement
with adjustable flow symmetry

2nd inlet introduces closed flow loop

-- pV-power
-- DC-flow
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T1

T2

36
5 

m
m

Pb

Er3Ni

HoCu2

PTD406/404

Rotary valve

Current 2-stage 4 K PTC (Giessen)
470 m

m

"Split-Design"

Flexible pressure line
(0.5 – 1 m)

Reduction of vibrations
from rotary valve

Makes possible the
positioning of the
rotary valve in low
stray field (< 20 mT) 

Antiferromagnetic
Rare Earth-
compounds

HP- and LP-Connections
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Cooling Load Map of PTD406
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1st stage temperature (K)

Tmin = 2.21 K 

Simultaneous
cooling powers: 

2nd stage:
Q2 = 0.71 W @ 4.2 K

1st stage:
Q1 = 10 W  @ 46.6 K

at Pin = 5.6 kW

PTD406 / Leybold CP6000 compressor (6 kW nom.)

Cool down time to 
4.2 K: ≈ 65 minutes
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Cooling Load Map of PTD406c

36 39 42 45 48 51 54 57 60 63 66
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4.4

4.8

5.2

0 mW

250 mW

500 mW

750 mW

2nd stage
1000 mW

30 W20 W10 W   0 W
1st stage

6 kW-compressor CP6000 with 6 L-Buffer at LP-inlet

T 2 (K
)

T1 (K) PTD406c: concentric cold platforms

Phase shifters optimized for high cooling power
at 1st stage increased cooling power at 1st stage
30 W @ 61.5 K and 750 mW @ 4.2 K with Pin = 6.0 kW

360 m
m

Giessen 2007

T1

T2
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4 K PTC with 10 kW compressor (PTD 411)

20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
2.0
2.2
2.4
2.6
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3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

CP6000 + CP4000, 1.2 Hz
Pin = 8.9 - 10 kW1.25 W

1 W

0.75 W

0.25 W

45 W

15 W
30 W

0.5 W

Q2 =
0 W

Q1 = 0 W

Cooling load map PTD411 

T 2 (
K

)

T1 (K)
Q2 = 1.0 W @ 4.07 K and Q1 = 30 W  @ 53 K

with Pin = 9.5 kW

Giessen 2006 PTD411: increased tube diameters

Cool down to 4.2 K ≈ 1 h

396 m
mT1

T2
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"Small" 4 K PTC with 2 kW compressor (2008)

Simultaneous cooling powers: 

200 mW @ 4.16 K and 1.0 W @ 55.6 K
with 2 kW electric input (air-cooled compressor)

(PTD4200 with 4 kW compressor next table)
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2.6
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3.4

3.6

3.8

4.0
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4.4

4.6

4.8

2nd
 s
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3 W

200 mW

150 mW

100 mW

50 mW

Compressor CP2000, air-cooled

2 W
1 W

0 W

250 mW

0 mW

T 2 (
K)

T1 (K)

1st stage  

276 m
m

PTD 4200

Cold head volume ≈
0.6 × cold head volume of PTD406

T2

T1
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Performance data of TransMIT 4 K PTCs
Model Pin

(steady state)
Typical cooling 

power
Tmin Cool down

to 4.2 K *)

PTD4200

PTD4200-4kW

PTD404

PTD406

PTD406c**)

PTD411

2.0 kW

3.8 kW

3.8 kW

5.7 kW

6.0 kW

10 kW

0.21 W @ 4.2 K
1 W @ 56 K

0.45 W @ 4.2 K
10 W @ 53 K

0.6 W @ 4.2 K
10 W @ 53 K

0.7 W @ 4.2 K
10 W @  49 K

0.75 W @ 4.2 K
20 W @  52 K

1.1 W @ 4.2 K
30 W @ 53 K

< 3.0 K

< 2.6 K

< 2.5 K

< 2.4 K

< 2.5 K

< 2.4 K

< 120 min

< 75 min

< 75 min

< 65 min

< 65 min

< 65 min

*) With standard copper radiation shield installed**) Prototype with 6 L-Buffer volume at LP-side
of compressor
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• Integral-Design 
• 0.7 W @ 4.2 K
• 30 W @ 55 K
• Input: ≈ 7 kW

Cryomech PT407 Sumitomo-APD
SHI SRP-052

• Split-Design
• 0.5 W @ 4.2 K
• 20 W @ 45 K
• Input: ≈ 7.5 kW

Some other commercial 4 K PTCs
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Coefficient Of Performance of 4 K GM- and PT-Coolers

3x10-6

10-5

10-4

3x10-4

PTR (Giessen 2006, 4 kW)

 

PTR Cryomech 2001, 8 kW

GM, Sumitomo SRDK-415D, 7.5 kW

PTR (Giessen 2001, 1.8 kW)

PTR (Giessen 1997)

COEFFICIENT OF
PERFORMANCE @ 4.2 K

PTR, 2-stage+LN2 (Giessen 1995)

PTR, 3-stage (Nihon Univ.1994)

PTR (Giessen 1996)

GM, Toshiba 1994 (prototype, 7 kW)

GM, Leybold 1996 (prototype, 6 kW)

• Increase of COP @ 4.2 K
by a factor of 45 within 12 years for the PTC

• Nowadays: COP(PTC)  ~ COP(GM) @ 4.2 K               

power input El.
power CoolingCOP =

! 10 1.4 
K 4.2-K 295

K 4.2  COP 2-
Carnot ×==
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Some Applications of 4 K PTCs (Giessen)

• Small scale Helium-liquefaction (0.15 L/h, 1997)
(0.3 - 0.7 L/h, 2005)

• "Dry" superconducting magnet cooling
- 3 T (120 A) Nb3Sn-magnet First PT-cooled SC-magnet (1998)
- 5.5 T NbTi-magnet with persistent mode switch (2002)
- 5 T NbTi-magnet with top-loading system (2007)

• "Dry" cooling of Josephson voltage standards (since 2002)
Co-operation with: IPHT Jena, PTB Braunschweig

• "Dry" precooling of sub-Kelvin cooling stages
- ADR with 5 T NbTi-magnet (2000) Tmin = 96 mK (with CSP, Ismaning)

- Miniature 3He/4He-dilution refrigerator with Tmin =  50 mK
Co-operation with: Institute of Applied Photonics e. V., Berlin  (2006)
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First small-scale He-liquefier with PTC (Giessen 1997)

Giessen 
1997

Continuous
precooling along
regenerator to 
7 K.

Liquefaction rate: 
0.13- 0.16 L/h  4He

He- inlet
(1 bar)

Precooling to  60 K 
at 1st stage

LHe

Vacuum vessel

Radiation shield
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Current He-liquefier with PTC (Giessen 2005)

• Operation of cold head in He-gas !

• 6 kW compressor (Leybold CP6000)

• Helium inlet through capillary:
liquefaction rate: 0.50 L/h

• Free inlet of helium gas:
liquefaction rate: 0.46 L/h

Rather efficient precooling
already by contact of the gas
with the cold head parts

• Disadvantage of capillary: Risk of
plugging by the freezing of gas
impurities !

T1 ≈
55 K

T2 = 
4.2 K

LHe

Inlet of He-gas
1 bar
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“Dry” Cryostat with 5 T Magnet and Top-loader

Giessen 2006-2007

• Cooldown time to 4 K: 7 hours
(Extra mass ≈ 8 kg)

• Base temperature with
sample holder inserted: 3 K

• Magnet sweep to 5 T:  7 min 

• Changing of samples and cooling
back to 4 K within < 2 hours

Lock

Gate valve

Sample  stick
φi 52 mm

top-loading insert

Optional 3He-sorption
cooler insert:

T-min = 407 mK

Hold time: 6 hours

Q ≈ 60 µW

Institute f. Applied
Photonics e.V. Berlin (2007)

User: IMS, University of Karlsruhe

PTD406

CP6000

670 m
m
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Electrical insulator
for reduction
of noise from r.v.

Electrical insulator
for reduction
of noise from r.v.

Low-noise cooling Josephson voltage standards

PTD402s with 2 kW 
compressor

• Q2 = 150 mW @ 4.2 K

• Cool down time to
4.2 K: 160 min

Dielectric waveguide 
(70 GHz)

Josephson chip
in Cryoperm shield
cooled to 3.8 K

1 V and 10 V Josephson voltage standards
Application: Primary voltage standards in industry and metrological institutes

400 m
m

New system with
PTD4200 / CP2000A

Q2 = 200 mW @ 4.2 K

(Giessen 2009)

Heat load from

voltage standard:

70 mW on 2nd stage

0.3 W on 1st stage

Achieved accuracy

same as in LHe:

6 × 10-10



ET-Workshop, Jena 03/2010 22

Precooling of the 3He-4He-stage only by 
PTC (2.46 K) and one 3He-sorption stage (0.4 K) 

Still 0.7 K
Continuous HX

Autonomous Mini Dilution Refrigerator with 4 K PTC

Institute of Applied Photonics e.V.
Berlin (2005)

Mixing chamber: 50 mK

3He-evaporator of 3He sorption stage

T2,PTC = 2.46 K (PTD404 with 4 kW compressor)

3He condenser of DR: 0.4 K

3He-sorption pump

26
0 

m
m

PTD404
75

0 
m

m
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Low-temperature limit of PTCs ?

Dynamic T-oscillation in He-gas 
(adiabatic):

ΔT = αv <T>/(ρcp) Δp

ΔT 0 for αv 0

Cooling power 0 for ΔT 0

Conclusions:

• λ-line cannot be reached with 4He,  
since αv = 0  for  T > Tλ !

• With 3He, temperatures well
below 2 K could be achieved.

Problem: Regenerator efficiency
below 2 K 

0.4 0.8 1.2 1.6 2.0 2.4
0

10

20

30

40

50

αv( 
4He) = 0

3He

λ-line

4He melting curve

4He

αv( 
3He ) = 0

3He data from Sherman & Edeskuty (1960)

3He melting curve

 

p 
(b

ar
)

T (K)

Phase diagrams and αv = 0 - line for 4He und 3He

αv = Volume expansion coefficient
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PTC with 3He-stage
Lab model: 2-stage PTC with separate gas circuits (Giessen 2003)

1st stage: 4He

2nd stage: 3He

 

R2C1 

RV1 

RG2H 

RG1 

PT1

Pb 

ErNi 

HoCu2 

PT2 

RG2L 

C2 R1

RV2

CP1 

CP2 

1st stage

2nd stage

400 m
m

1st stage: 6 kW-compressor
2nd stage: 2 kW-compressor

Record low
temperature: 

Tmin = 1.27 K

Cooling power:
30 mW @ 2.0 K 
Pin,2 = 1.2 kW 
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Vibrations of 4 K PTCs: PTD406 (6 kW)
Acceleration-spectra of PTD406, f = 1.5 Hz,
6 kW-compressor, Δp = 13 bar, T2 ≈ 0 °C

PTC-induced acceleration (PTD406):

x: arms = 1.2 × 10-4 g (n = 1)
y: arms = 0.14 × 10-4 g (n = 1)
z: arms = 0.61 × 10-4 g (n = 1)

Compare: aGM-cooler ≈ 10-2 g
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Origin: Elastic deformation of the stainless
steel tubes due to pressure oscillation

ΔL/L ∼ E-1 (r/s) Δp
r  = tube radius s = wall thickness

y

z

Pulse tube 2nd stage

Giessen 2006

Acceleration
sensor

T2
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Displacement from residual vibrations (6 kW)
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Diplacement-spectra of PTD406, f = 1.5 Hz,
6 kW-compressor, Δp = 13 bar, T2 ≈ 0 °C

Further reduction of vibrations:
• by increasing the wall thickness s of the tubes:

ΔL/L ∼ E-1 (r/s) Δp
• by decreasing the compressor input power, i.e. Δp
• by mechanical decoupling of the cold platform
(all measures at the cost of available cooling power !)

6 kW compressor:

x : ± 16 µm  (background ?)

y : ± 1.8 µm

Z : ± 6.7 µm
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Displacement-spectra of PTD4200 (2 kW and 4 kW)
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2 kW compressor
Δp = 6.5 bar

PTD4200, f = 1.44 Hz, T2 ≈ 0 °C

2 kW compressor:

x : ± 1.6 µm

y : ± 1.8 µm

z: ± 3.4 µm
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4 kW compressor:

x : ± 2.3 µm

y : ± 2.7 µm

z: ± 4.4 µm
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Damping of vibrations: small 1-stage PTC

G10-support

Giessen 1999 1-stage PTC for HTS-SQUID cooling:
2 kW compressor, f = 4.6 Hz
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Cu-braid

Titanium tubes: Δz = 5 µm at cold platform

Δz < 1 µm with vibration reduction

at typical operating condition of Δp = 7 bar

Accelerometer

Cold
platform

s = 0.3 mm

s = 0.4 mm
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Damping of vibrations: small 1-stage PTC

Factor 4 @ f = 4.6 Hz

YBCO-rf-SQUID (FZ Jülich) 

LN2 (77 K): 45 fT/√Hz above 100 Hz

PTC (70 K): white noise 35 fT/√Hz

Giessen 1999
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"Vibration-free" 4 K PTC 
for CLIO, T. Tomaru et al.,
Cryocoolers 13 (2004), p. 695

Y. Matsubara, WEH-Workshop
"Applied Cryoelectrics" (2006)

Y. Ikushima et al. , Cryogenics 48 (2008)
p. 406

Advanced vibration isolation for 4 K PTCs (CLIO-100)
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Vibration reduction of Sumitomo 4 K PTC
Y. Ikushima et al. , Cryogenics 48 (2008) p. 406
R. Li et al., Cryocoolers 13 (2004), p. 695

4 K PTC: Sumitomo SRP-052A (7 kW compressor)

0.5 W @ 4.2 K and 20 W @ 42 K

with 40 cm line from rotary valve to cold head

Flexible heat links

Remark: A PTC system with active
vibration compensation was built
and tested by the group of Fulvio
Ricci (Rome)
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Vibration of Sumitomo 4 K PTC
R. Li et al., Cryocoolers 13 (2004), p. 695 and Y. Ikushima et al. , Cryogenics 48 (2008) p. 406

±
5 µm

±
5.5 µm

±
8.5 µm

Displacements of 2nd stage with
vibration isolation:

Flexible heat links x y z
OFHC-Cu ±1.2 µm ±1.5 µm ±0.2 µm

High-purity Al ±0.2 µm ±0.1 µm ±0.02 µmRequirement of amplitude < 1 µm
for CLIO fulfilled
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Summary

Present scientific/technical staff at "Low Power Cryocooler
Group" of IAP and of TransMIT-Center :

Kai Allweins Benjamin Blenn Marc Dietrich  Andreas Euler
Yusuf Kücükkaplan Günter Thummes

• Nowadays, 4 K PTCs have proven to be reliable cryocoolers
with low intrinsic vibration level.

• Cooling powers range from 200 mW to more than 1 W @ 4.2 K

• By use of special set-ups for vibration isolation the residual
vibration amplitudes can be reduced to a "tolerable" level of

< 1 µm,   as shown for example by the Cryogenics Group of CLIO-100.
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