

Two-In-One Observatory:

LIGO Experience with Co-linear IFOs

Keita KAWABE, LIGO Hanford, Caltech

TOC

- LIGO
- Co-linear IFOs: Good and Bad
- Examples

H1 and H2

- 4km and 2km instruments in a single vacuum enclosure
- ITMs, BSs, RMs, input optics and lasers in the same room.
- Operated at the same time in S5 (not in S6)
- H2 will be 'upgraded' to 4km for aLIGO

Co-linear IFOs: Potential scientific benefits still look attractive

- Narrow coincidence window
- Overlap reduction function=1 (isotropic stochastic search)
- Telling GW and common length change apart by 4km and 2km difference
 - There are tons of disturbances acting differently on 2 IFOs, though

Overlap reduction function?

- Important for cross-correlation analysis of stochastic search
- Represents an overlap of antenna patterns of a pair of IFOs at different locations and orientations.
- L1-H1 attenuated for f>50 Hz despite a good alignment of the two IFOs

Overlap reduction function?

- Important for cross-correlation analysis of stochastic search
- Represents an overlap of antenna patterns of a pair of IFOs at different locations and orientations.
- L1-H1 attenuated for f>50 despite a good alignment of the two IFOs

LIGO-G1000141

Keita Kawabe

Co-linear IFOs: Could be bad, not because of science but pesky thing called reality

- Lots of things cause common noise
 - Seismic: EQs, local traffic, wind, air conditioning turbine, air conditioning flow, cooling water lines, water pumps, LN2 dewer/insulation slippage, dams discharging, firing etc.
 - Acoustic: Fans, air conditioning flow etc.
 - Magnetic: 60Hz and its harmonics etc.
 - RF: Various electronics e.g. proximity reader, cpu clock etc.

This is in no way a comprehensive list

Co-linear IFOs: Could be bad, not because of science but pesky thing called reality

- Upconverted (bi-linear, fringe wrapping,
 Barkhausen etc.) as well as linearly coupled
- Can be coherent (small motion scatter, bi-linear around lines etc.), or incoherent but coincident
- We found nothing that cannot be mitigated/vetoed, but these are serious problems nevertheless
- Difficult to predict, mitigation strategy case-by-case

Ex) H1-H2 coherence from seismic and acoustic: problem for S5 stochastic search

scale: subtle thing!

I cannot talk about all coupling paths, but I'll give you some idea anyway, 1

I cannot talk about all coupling paths, but I'll give you some idea anyway, 2

You could make the coupling smaller,

- "Meat locker" acoustic enclosure in addition to the smaller enclosure on the table
- Moving electronics racks away
- etc.

- Floating the table
- Larger optics
- Better quality components (beam dumps etc.)

or make the source smaller (if it's your fault)

- Putting big turbine on a spring,
- Lowering the air flow of HVAC system,

or make the source smaller (if it's your fault)

- Putting big turbine on a spring,
- Lowering the air flow of HVAC system,
- Making the road less bumpy,

or make the source smaller (if it's your fault)

- Putting big turbine on a spring,
- Lowering the air flow of HVAC system,
- Making the road less bumpy,
- Etc., you're already getting the full picture.

Another Example: Cross-IFO Scattering

Another Example: Cross-IFO Scattering

- H1 light scattered into
 H2 mirror/cage etc.,
 eventually scattered or
 reflected back to H1,
 - and vice versa.

Another Example: Cross-IFO Scattering

- Interference of the main beam and a beam with uncontrolled phase
 - $-\alpha \sin\phi(t)$: α coupling, ϕ phase
 - Potentially both small amplitude (linear) and fringe wrapping (upconversion)
- Many possible paths, simple ones reasonably understood (e.g. H1 ITM- H2 ETM – H1 ITM)
- Multiple bounce path exists, fringe wrapping observed when both IFOs are in lock, paths not well understood

✓ **H1:LSC-DARM_ERR** (t = 857680387.078 s, f = 1.9×10³ Hz, Q = 4.5×10¹, Z = 7.7×10⁰, X = 3.0×10⁻⁸ Hz^{-1/2})

time series: raw, high passed, whitened | spectrogram: raw, whitened, autoscaled | eventgram: raw, whitened, autoscaled

✓ H2:LSC-DARM_ERR (t = 857680386.750 s)

 $(t = 857680386.750 \text{ s}, f = 1.1 \times 10^2 \text{ Hz}, Q = 2.3 \times 10^1, Z = 3.2 \times 10^1, X = 4.8 \times 10^{-6} \text{ Hz}^{-1/2})$

time series: raw, high passed, whitened | spectrogram: raw, whitened, autoscaled | eventgram: raw, whitened, autoscaled

Multiple-bounce fringe wrapping event. Characteristic time-frequency feature. Caused by O(10) bigger motion than usual.

Cross-IFO scattering

- Events as bad as shown here can be (and was in S5) vetoed using optics motion amplitude
- Usual level for this specific path is much smaller than the back ground noise
- New baffle installed after S5: Baffling will make it OK for aLIGO
- Caution: Scattering areas/sites should be vibrationally isolated.

Magnetic Coupling Ex: OMC Alignment (in S6, no H1-H2 comparison)

Magnetic Coupling Ex: OMC Alignment (in S6, no H1-H2 comparison)

Mitigation: Feed forward of the magnetometer signal

Magnetometer Feed Forward: Works

Magnetic Coupling to the OMC Alignment

- In this case the magnets were much stronger than necessary.
- But you'd have never thought that this would happen, and it would have been difficult to predict before seeing it.
- Another "oops" moment.

Summary

- There are benefits of co-located, co-linear IFOs
 - In the end we'll still have H1 and H2 in aLIGO
- Many difficult-to-predict common noise sources
 - Nothing that we couldn't mitigate/veto was found.
 - We WILL find more in aLIGO, though it looks OK for now.
- Unfortunately environmental noise matters. You should get worried even if you are not directly shaking the test masses.
- For some of the problems (e.g. cross-IFO scattering) some quantitative projection is possible
 - You should start thinking about the requirement for 3rd generation IFOs now.

The talk ends here

 If you really want to know more about the environment noise, you want to talk to Robert Schofield. He's THE environment guy.

http://www.ligo-wa.caltech.edu/~robert.schofield/iLIGOenvironmentalInflueinces.htm

Another example: coil current upconversion

- When we push the voice-coil actuator hard at low frequency, we observe a broad high frequency noise.
- It's the current, not the displacement.

Coil current upconversion

- Barkhausen? Magnet swapped (not all), not much change
- Bad electronics? Was fixed (upconversion test yet to be done)
- Something else? Bad wire stand-off?
- Offloading coil to pzt (H1) and HEPI (L1) works.

- Nothing conclusive yet.
- aLIGO probably better
 - no coil
 - monolithic suspension
- Incoherent between 2
 IFOs

LIGO

frequency [Hz]

Offsetting current to external actuators

- Current is offset to the external actuator (top plot)
- This is reducing number of glitches in L1 (bottom plot, omega glitchgram)

Dams!? Who would have thought that!

1000

2000

Hours since November 27, 2006

3000

4000

5000