Once Upon a Time in Frascati

Starring:

CAVOTO AS "ARMONICA"
DI MARCO AS "ChEYENNE" pinci as "Frank"

Remainder of the situation

AmBe after background subtraction. 3 Populations are evident:

1. Short (spot like) and very dense (18 ph/pix). This is signal.
2. Longer ($\sim 1-2 \mathrm{~cm}$) and medium dense ($12 \mathrm{ph} / \mathrm{pix}$). Is this signal ?
3. Short (spot like) and low dense. These are remaining split cosmics

AmBe

no source

AmBe - NoSource

Focus on the population \#2

AmBe after background subtraction. 3 Populations are evident:

1. \square
2. Longer ($\sim 1-2 \mathrm{~cm}$) and medium dense ($12 \mathrm{ph} / \mathrm{pix}$). Is this signal ?
3. \square
AmBe
no source
AmBe - NoSource

Focus on the population \#2

Working hypothesis last time: could be the $59.5 \mathrm{keV} \gamma \mathrm{s}$ from Am decay ($1 \gamma / 1 \alpha$).
If this is true, those events are background and need to be removed from the signal (S) when computing the S eff vs B rejection.

Need to calibrate the energy for the effect of saturation to test this hypothesis (to see if those events have $\mathrm{E} \sim 60 \mathrm{keV}$

Two methods implemented, third one is Francesco+Karolina

1. Average calibration. Apply a calibration factor to the clustered energy
2. Calibrate energy in slices with size $\sim \mathrm{Fe}$ spot
3. Calibrate single pixels

Calibration strategies

1. Average calibration. Apply a calibration factor to the clustered energy
a. Simple and immediate. No need to re-run the reconstruction
b. Works in the approximation that the clusters are similar to the Fe spots on which the calibration curve was derived. Which is ~OK for short OR uniform tracks like the ones in the green blob
2. Calibrate energy in slices with size \sim Fe spot
a. Pro: it corrects the cluster energy in small Fe-like slices along the (curved) track.
b. Implemented. Need to correct the formula and re-run reconstruction
3. Calibrate single pixels
a. The ultimate solution. Corrects pix-by-pix energy. Ref. Karolina/Francesco. Need validation + re-reco

Calibration strategy for the following

1. Average calibration. Apply a calibration factor to the clustered energy
a. Simple and immediate. No need to re-run the reconstruction
b. Works in the approximation that the clusters are similar to the Fe spots on which the calibration curve was derived. Which is ~OK for short OR uniform tracks like the ones in the green blob

IN THE NEXT FUTURE ...

The master formula from Francesco measurements

Events in the "green" blob

Selecting events within the "interesting" region in the plane density vs. length gives something around 60 keV with 30% resolution. Compatible with monochromatic emission? Maybe.

Final event selection

Convinced that they come from $60 \mathrm{keV} \gamma$'s and not from neutrons, remove them.
Full selection for our "pure" neutron recoils sample is:

1. Field cage efficient region (geometry)
2. Track length < 500pix and slimness > 0.3 (remove cosmics)
3. Density $>5 \mathrm{ph} /$ pix (remove residual split cosmic tracks)
4. 60 keV "diagonal" density vs length cut

Events for the full selection

Distributions of calibrated energy / density for the selected samples

Background rejection

Compute background rejection after subtracting the (normalized) cosmic background from AmBe

N.B. Rejection on "no-source" bkg has too large stat uncertainty
=> Focusing on electron rejection.
Efficiency of the full selection:

- $\quad 100 \%$ efficient on S
- 88% efficient on B

Adding selection on the final variable (energy density):

- eff(S) ~ 50\% [40\%]
- $\operatorname{eff}(B) \sim 0.88$ * 0.05 [0.012] ~ 4\% [1\%]

THE END

