Study of saturation effects in GEM-3 with LEMON

Karolina Kmieć & Francesco Renga INFN Roma

Reminder: Saturation of GEM3

Reminder: GEM-3 gain (I_3/I_2) vs. HV₃

- From previous plots: 460 V / 460 V / 340 V is not saturated
- We can assume that 340 V / 460 V / < 460 V is also not saturated

Saturation and charge density

• Assumption:

- saturation is due to space charge in each single all (no impact of charge in nearby holes)
- Consequences:
 - Saturation can be treated as an effect of *charge* density on GEM-3, as far as we consider regions of area not much larger than the hole pitch (140 x 140 μ m²)
 - the effect on charge densities will be the same for all sources
 - each CMOS pixel is 125 x 125 μm^2 on the GEM \rightarrow we can correct pixel by pixel

Idea

- We use data taken at $HV_3 = 460 V$
- The charge arriving on GEM-3 is:

 $Q_{\rm in} = N_e e G(HV_1) G(HV_2)$

• We would expect an output charge of

 $Q_{\rm out}^{\rm exp} = G(460 \ V) \ Q_{\rm in}$

• We measure instead:

$$Q_{
m out}~=~rac{I_3}{I_2} Q_{
m in}$$

- We get a correction function Q_{exp} vs. Q_{out}
- We convert to charge density, dividing by a suitable surface $\boldsymbol{\Sigma}$

Idea

- We use data taken at $HV_3 = 460 V$
- The charge arriving on GEM-3 is:

 $Q_{\rm in} = N_e e G(HV_1) G(HV_2)$

• We would expect an output charge of

 $Q_{\rm out}^{\rm exp} = G(460 \ V) \ Q_{\rm in}$

• We measure instead:

$$Q_{
m out}~=~rac{I_3}{I_2} Q_{
m in}$$

- We get a correction function Q_{exp} vs. Q_{out}
- We convert to charge densities, dividing by a suitable surface $\boldsymbol{\Sigma}$

How to choose Σ ?

• It can be demonstrated analytically that, if Q_{exp} vs. Q_{out} is modeled by a 2nd order polynomial, and we assume a 2D gaussian shape of the ⁵⁵Fe spots, the value of Σ to be used is $4\pi\sigma_x\sigma_y$

How to correct pixels

• The number of photons in a pixel is related to the charge density by:

To do

- We want to apply our method to the pictures recently taken at various distances of the source from the GEM, to see if we can recover a trend of light vs. distance similar to the one observed at BTF
 - CAVEAT: trend observed at BTF probably due to contaminations of the gas, purity conditions could be different in our ⁵⁵Fe data, quantitative comparison could be difficult
- Any suggestion for other tests?