Electroluminescence

Principle of operation

We can add a grid below the Triple GEM structure:

 Δz =distance between mash and GEM ΔV = tension between mash and GEM

We can decrease the gain of GEMs so that e.g. for 1 electron reaching the GEM 10⁵ electron are produced in third GEM (more than half of the will be captured by the GEM electrode, let's say 2/3).

In the very high fields inside the GEM we get 8×10^3 photons; In the low electric field below the GEM we'll have 3×10^4 electrons. If we manage to make each electron creating a 2 or 3 photons we can have the same amount of light. To have an idea about the number of photons we can produce, we started from a phenomenological formula (valid for Xe)

Development and Characterization of a Multi-APD Xenon Electroluminescence TPC

$$\eta = 140 \left(\frac{\Delta V}{p\Delta z} - 0.83\right) p\Delta z$$

p= gas pressure Δz =distance mesh - GEM3 ΔV = tension mesh - GEM3

R. Ferreira Marques, A.J.P.L. Policarpo

LIP-Coimbra, Departamento de Física, Universidade de Coimbra, Coimbra 3004-516, Portugal

The GEM scintillation in He-CF $_4$, Ar-CF₄, Ar-TEA and Xe-TEA mixtures

Section A

Beaune 2002

M. M. Fraga, F. A. F. Fraga, S. T. G. Fetal, L. M. S. Margato, R. Ferreira Marques and A. J. P. L. Policarpo

Experimental setup

Emission spectra of He-CF₄ mixtures

The broad band in the visible region results from the excitation of a Rydberg state of the CF₄ molecule that dissociates into an emitting CF₃ fragment [8,11]. The energy threshold for this emission, CF₃^{*} (1E', 2A₂" \rightarrow 1A₁), is set to 12.0 eV.

Light around 620 nm is produced in CF4 dissociation processes Very high energy threshold; Close to ionization threshold;

Dissociation into neutral fragments in CF₄

 $e^- + CF_4 \rightarrow CF_3 + F + e^-$

Energy threshold: 10 - 12.5 eV (?)

Dissociation energy: $D(CF_3 - F) = 5.25 \text{ eV}$ Observed electronic transitions:

 CF_3^* (1*E*',2*A*₂" \rightarrow 1*A*₁'(repulsive state)) visible ~ 620 nm

CF_4

Process	Threshold
	(eV)
Direct vibrational excitation v_4	0.078
V ₃	0.159
Indirect vibrational excitation	4.0
Electron attachment	4.3
Electronic excitation (dissociation	12.5
into neutral fragments)*	(10)
Dissociative ionization [†]	15.9

Experimental setup

Number of collisions per cm leading to dissociation of CF_4 into neutral fragments, as a function of the electric field.

Very high threshold translate in very high electric field to start the process

Something between 10 and 12 kV/cm

At 12 kV/cm mean free path of 3.3 mm

Experimental setup

Since it was found that CF₄ electroluminescence has a very high energy threshold, we decided to modified MANGO adding a **grid** with $\Delta z=3 \text{ mm}$ and $\Delta V \text{ up to 4 kV}$ in order to have electric fields up to 10/12 kV/cm Unfortunately there were discharges at 3.5 kV and we stopped there (i.e. 10 kV/cm)

Then, we tested everything with ⁵⁵Fe X rays.

While keeping GEM at 400 V and scanning in ΔV we took two kinds of data:

 Long exposure images (30x10sec) to quickly measure the total amount of light produced;

Short exposure data (100 x 0.5 sec) to study in detail the ⁵⁵Fe peak position;

The currents drawn by the bottom electrode of last GEM and by the mesh were monitored, to check possible increase in total charge, indicating a multiplication process

We can now evaluate the "photon production efficiency" (α_{Mesh})

We can now evaluate the "photon production efficiency"

 N_{Mesh} is the difference of total number of photons collected and number with 0 kV/cm = 400 photons

 ϵ_{extr} was evaluated to be 0.5 at 10 kV/cm

We can now evaluate the "photon production efficiency"

 $\alpha_{Mesh} = \alpha_{GEM} \times \frac{1}{\epsilon_{extr}} \times \frac{N_{Mesh}}{N_{GEM}} = 0.08 \times \frac{1}{0.5} \times \frac{400}{160} = 0.4$

0.4 ph/electron in 3 mm gaps, means a mean free path of about 1 cm

Reasonable agreement

