Electroluminescence ## Principle of operation We can add a grid below the Triple GEM structure: Δz =distance between mash and GEM ΔV = tension between mash and GEM We can decrease the gain of GEMs so that e.g. for 1 electron reaching the GEM 10⁵ electron are produced in third GEM (more than half of the will be captured by the GEM electrode, let's say 2/3). In the very high fields inside the GEM we get 8×10^3 photons; In the low electric field below the GEM we'll have 3×10^4 electrons. If we manage to make each electron creating a 2 or 3 photons we can have the same amount of light. To have an idea about the number of photons we can produce, we started from a phenomenological formula (valid for Xe) Development and Characterization of a Multi-APD Xenon Electroluminescence TPC $$\eta = 140 \left(\frac{\Delta V}{p\Delta z} - 0.83 \right) p\Delta z$$ p= gas pressure Δz =distance mesh - GEM3 ΔV = tension mesh - GEM3 ## Experimental setup Effect of the electric field on the primary scintillation from CF₄ A. Morozov^a, M.M.F.R. Fraga^a, L. Pereira^a, L.M.S. Margato^{a,b}, S.T.G. Fetal^a, B. Guerard^b, G. Manzin^b, F.A.F. Fraga^a ^aLIP-Coimbra and Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra, Portugal ^bInstitut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble, France ## **Abstract** The effect of an electric field on the primary scintillation from CF_4 in the ultraviolet and visible wavelength regions (200 - 800 nm) is reported. The study was performed in the pressure range from 1 to 5 bar and at electric fields of up to 2 kV/cm. Photon emission spectra, fully corrected for the detection response, and the absolute photon yields in the ultraviolet and visible regions are reported. The CF_4 emission spectra and the photon fluxes show no variations with the field at low pressures (~1 bar), while at higher pressures the effect of the field on the scintillation is strong: the ultraviolet emission intensity increases and the visible intensity decreases with the field strength. Time spectra of the primary scintillation for several applied electric field strengths are also reported for the two wavelength regions of light emission. Key words: CF₄, primary scintillation, emission spectra, photon yield, time spectra Since it was found that CF₄ electroluminescence has a very high energy threshold, we decided to modified MANGO adding a **grid** with Δz =2/3 mm and ΔV up to 3 kV in order to have electric fields up to 10/15 kV/cm Then, we tested everything with 55Fe X rays.