

Alessandro Cardini

on behalf of the Cagliari LHCb Group

Outline

- LHCb: the history
- The Cagliari Group along the years
- Our contributions: hardware & analyses
- The current upgrade
- The future: toward the next upgrade

LHCb Cagliari: 20 years!

- It was well known that the B production cross section at LHC would have been quite large. At the 1992 Evian Workshop three proposals are submitted: 2 fixed-target experiments (LHB and GAJET) and one proposing a forward spectrometer operating in collider-mode (COBEX)
- LHCC suggests the three groups to converge to a common experiment operating in **collider-mode** to exploit the large B-production cross section and using a **convincing trigger strategy**
- The LoI is submitted to LHCC in 1995, "<u>to build a forward collider detector dedicated to the study of CP</u> violation and other rare phenomena in the decays of Beauty particles"
- The experiment is approved in 1998. **The Cagliari Group joined the Collaboration in 1999.** The experiment design is finalized by 2003, and data-taking starts on November 23, 2009

Cagliari, 11DEC19

A. Cardini / INFN Cagliari

LHCb: specifications

- LHCb is a F-GPD (Forward General-Purpose Detector)
- Forward spectrometer, acceptance 2<η<5, 4% of the solid angle
- Can exploit ~40% of the heavy quark production cross section
- To perform precision measurements in the Beauty and Charm sector:
 - $\Delta p/p = 0.35\%$ @ 5 GeV/c $\div 0.55\%$ @ 100 GeV/c
 - High p_t tracks impact parameter resolution of 20 μ m
 - Decay time resolution of 45 fs ($B_s \rightarrow D_s \pi$)
 - Operates at a constant instantaneous luminosity of 4E+32 cm⁻²s⁻¹
 - High efficiency multi-level trigger, optimized for leptonic and hadronic final states

Cagliari, 11DEC19

A. Cardini / INFN Cagliari

A Strong Commitment in time

- Muon system readout Coordinator ٠
- M2-M5 Commissioning Responsible (2006-2008) •
- M1 installation and commissioning Coordinator (2008-2009) ٠
- Muon system operation Coordination (2009, 2010, 2012) •
- Muon Piquets all along Run1 and Run2 •
- Triple-GEM operation Responsible (2009-2018) ٠
- Muon deputy PL (2009-2012), Muon PL (2012-2015) ٠
- LHCb National Coordinator (2015-2018) •
- Official responsibilities of the members of the cagliari LHCb Group Editorial Board Chair (2013-2015), EB component (2019-2021) •
- Charm Physics Group convenors •
- B to charmonia convenor •
- Luminosity and Ion runs co-convenor •
- IFT and CEP Convenor •
- **ERC on Heavy Ions Physics** •
- ECGD Chair (2019-2021) •
- LHC HFVG (now) ٠
- LHCC CMS P2UG (2018-) ٠
- ٠ ...

THE BEGINNING, THEN RUN1 & RUN2

Muon System Readout

- Design a R/O system of a complex projective detector feeding info to level-0 muon trigger at 40 MHz
- Design an ASIC to perform the on-chamber logic operations and time alignment → DIALOG
- Design an ASIC with on-board pipelines to perform the front-end readout at 1 MHz → SYNC
- Design the FEE board for all the chambers \rightarrow CARDIAC

The Muon detector readout Architecture

The DIALOG ASIC

S. Cadeddu

CARDIAC FRONT-END BOARD

CARDIAC-GEM FRONT-END BOARD

The SYNC ASIC

(1,1,1)

Triple-GEM for the first muon station

- In 2000 we started an R&D to develop a fast triple-GEM based detector for M1
 - 96% efficiency in 20ns window fast gas!
 - Could operate up to 1 MHz/cm
 - Could withstand Run1+2
- 50% built in Cagliari
- First detector of this kind approved for an LHC experiment
- It has become **the reference** for CMS triple-GEM detector development for phase-1 upgrade (GE1, GE2, MEO)
- Operated successfully all along Run1 and Run2
- Dismounted in early 2019

Cardin;

D. Pinci

GEM detectors: Mantainance / Dismantling

- Periodic maintenance or replacement of the GEM detectors
- Starting from March 2019 the M1 station has been fully dismounted as foreseen for the upgrade of LHCb
- Further study of triple-GEM detector aging at the CERN improved Gamma Irradiation Facility (GIF++)

ONGOING ANALYSIS ACTIVITIES

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

Search for new (pseudo) scalar interactions: $B_s \rightarrow \mu^+ \mu^-$ and $D \rightarrow \mu^+ \mu^-$

- Very rare decays of a pseudo scalar mesons to two leptons branching fractions
- Probe new possible scalar or pseudo scalar interactions
- Model independent searches for New Physics
- $B_s \rightarrow \mu^+ \mu^-$ observed by LHCb and CMS combination and by LHCb alone $_{sp}$
- Full Run 2 analysis ongoing: world best BR measurement
- Three experiments combination (Atlas CMS LHCb) in the plans for better sensitivity
- D⁰→µ⁺µ⁻ probes the up sector currents and complementary New Physics (e.g. leptoquarks)
- Run1-2 analysis at full speed led by Cagliari together with CERN
- Will reach values close to SM branching fraction 10⁻¹¹!

(Novel) method of Bs reconstruction

B_s mass plot from this new reconstruction method

b-quark hadronization variation with energy and kinematics

- Fraction of b quarks forming a B_s is fundamental to measure branching fractions sensitive to New Physics and also probes interesting non-perturbative QCD
- Its variation with collision energy and B kinematics measured with $Bs \rightarrow J/\psi \phi vs B^+ \rightarrow J/\psi K^+$ decays at LHCb
- . First observation of a dependence with \boldsymbol{p}_{T} and strong evidence for the dependence with energy
- Submitted to PRL (arXiv:1910.09934)

F. Dettori

B decays to double charm

- Interference at tree level in $B_c^+ \rightarrow D_s^+ \overline{D}^0(D^0)$ to measure CKM angle γ , the weak phase of V_{ub}
- Completed measurement of Run I data: No signal, first limits on 12 B_c^+ decay modes consistent with expectations ARXIV:1712.04702, NUCL. PHYS. B 930(2018)563
- Spin-off: measurement of direct CPV in normalisation channels $A^{CP}(B^- \rightarrow D_s^- D^0) = (-0.4 \pm 0.5 \pm 0.5)\%$ first measurement $A^{CP}(B^- \rightarrow D^- D^0) = (2.3 \pm 2.7 \pm 0.4)\%$ world best measurement ARXIV:1803.10990, J. HIGH ENERG. PHYS. 05 (2018) 160
- Run II analysis in advanced state
 - > All Run 2 data, higher $\sigma_{b\bar{b}}$
 - ➤ Include $B_c^+ \rightarrow D^{*+}\overline{D}^0(D^0)$ channels
 - Revisiting BDT, background model, fit method

 $m(D^+\overline{D}^0)$ [MeV/ c^2]

B meson decays with charmonia $(c\overline{c})$ in final state

Analyses done within the B2CC physics working group, that comprises analyses of CP violation and precise determination of particle properties exploiting decays with charmonia resonances $(J/\psi, \psi(2S), ...)$ in the SM (served as convener in 2017-2018).

Contact author for Measurement of CP violation using $B_s^0 \rightarrow J/\psi\phi$ in LHCb Run II data (2015-2016 data taking) Eur. Phys. J. C 79 (2019) 706, done in collaboration with Edinburgh, Heidelberg, Santiago, Nikhef and China

CKM matrix: 3x3 matrix describing guark mixing (3 angles, 1 phase). Parameters need to be measured!

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - \eta) & -A\lambda^2 & 1 \end{pmatrix}$$

system using LHCb Run II data

Imposing unitarity **Experimental limits** 0.05 Theory prediction <u>م</u>ہ و 0 Core program of LHCb Most precise world result 0.05 LHCb _sd]*_10.14 Now: Measurement of CP violation using $B_s^0 \rightarrow J/\psi \pi \pi$ using full Spring 2019 4.9 fb⁻ $(\Delta \log \mathcal{L} = 1.)$ 0.12 Performed with Piera Muzzetto in collaboration with Tsinghua University SM $\psi(2S)\phi$ 3 fb⁻ 0.10 Planned: Measurement of the decay width difference in the B^0 Combined LHCb 0.08 $J/\psi K^{+}K^{-}$ 4.9 0.06 high mass 3 fb Preliminary work performed in the master student work of Danilo Deiana

-0.4

-0.2

-0.0

0.2

 $25^{\phi_s[\mathrm{rad}]}$

F. Dordej

Aim: Measure the phase (angle) β_s

LHCb Run II data

٠

Study of the rare decay $\Sigma^+ \rightarrow p \mu^+ \mu^-$

- Analysis performed using 2011 and 2012 data, excess observed at 4.1σ significance, preliminary Branching Fraction measured $(2.2^{+1.8}_{-1.3}) \times 10^{-8}$, wrt SM~ $5x10^{-8}$
- Now: Improved analysis using Full Run 2 dataset (2016-2018) ٠
- Revisit the measurement of the BF
 - Better control of the background, in particular that coming from $\Lambda \to p \pi^-$
 - Exploiting a dedicated trigger selection, 10 times more luminosity
 - Revisiting the efficiency determination
- Study of the di-muon mass
 - «HyperCP anomaly» 3 candidates observed, remarkably with the same di-muon mass 214 + 0.5 MeV/c²
 - This would point towards an intermediate particle X^o
 - For LHCb di-muon invariant mass is phase-space like: no resonance seen
- Study of direct CP violation

Currently one bachelor student and soon one master student on it!

Cagliari, 11DEC19

A. Cardini / INFN Cagliari

F. Dettori F. Dordei

(2018)]

221803

20

-

m_{µ+µ-} [MeV/c²]

 $D^0
ightarrow h^+ h^- \mu^+ \mu^-$

Cabibbo-Maksimowicz 5-dim. parametrisation: $\cos(\theta_h), \cos(\theta_u), \phi$ $m^{2}(hh) m^{2}(\mu\mu)$

Heavy Ion Activities

- LHCb started Heavy Ion activities in 2015; three setups on top of pp collisions:
 - p/Pb-GAS (SMOG) [NEW], p-Pb [new vs], Pb-Pb [NEW]
 - Cagliari deeply involved in running, trigger, reconstruction, data quality and selection studies together with LAL group
- Huge potential to study uniquely
 - Quark Gluon Plasma (QGP) in PbPb (χ_c , J/ ψ from B) and SMOG (unique Vs)
 - Cold Nuclear Matter Effects in pPb
- Results from PbPb/PbNe 2018 run

Selected Results: PbPb

 $m(K^{+}\pi^{-}\pi^{+})$

Proton lead

THE PRESENT: UPGRADE 1

Motivations

- No (yet) evidence for New Physics
- Look for tiny deviation from SM predictions
- More (x10) data required
- The current 1 MHz level-0 trigger output is a severe limitation!
- If luminosity increases:
 - trigger yield of hadronic events saturates
 - need harder cuts on Pt and Et due to the 1 MHz bandwidth limit
 - \rightarrow no gain in statistics
 - ightarrow limited to ~5 fb-1 in Run2
- Note that our upgrade luminosity does not depend LHC upgrade, we only use a fraction of the available luminosity (i.e. what is used by ATLAS and CMS)

Upgrade HOWTO

CERN-LHCC-2011-001 CERN-LHCC-2012-007

- Remove the level-0 hardware trigger
- Readout an event at every bunch crossing (40 MHz)
- New front-end electronics (with on-chip zero suppression)
- New DAQ system
- Use an efficient fully software trigger accessing complete event information, running at the bunch crossing rate, performing a full online event reconstruction
- Redesign several detectors to cope with increased occupancies

- Data taking conditions
 - Leveled L = $2 \cdot 10^{33}$ /cm²/s
 - 30 MHz collisions
 - 20-100 kHz to disk
 - ~5 fb⁻¹ per year
- Challenges
 - High pile-up
 - Large occupancies difficult event reconstruction and PID
 - Huge Data Rate
 - Radiation damage

nSYNC project

Version 2: Submitted: November 2016 Received: March 2017 PRR: October 2017

Start Tender: November 2017 Contract Signed: July 2018

Delivered: January 2019

- 2800 chip packaged
- 4 wafer ready in our hands
- 6 more wafer on hold at UMC

Prod. Test End: July 2019

- Needs for the installation
 - About 800 nSYNC including spares
 - 840 good nSYNC already selected
 - Others 200 nSYNC selected as spares.

INE

A. Ca

Cagliari, 11DEC19

Irradiation test of nSYNC

The nSYNC chip has been tested under radiation using both 60 MeV ٠ proton beam (at Catana facility, LNS) and X-Ray (Cagliari), up to 1.2 kGy and 3 kGy respectively.

D. Brundu S. Cadeddu A. Cardini

L. Casu

\$L dl

- Excellent performance in terms of Single Event Upset (SEU), power consumption, TDC functionalities.
- Interesting for the community: first measurments of SEU cross section for ٠ UMC 130 nm technology, $\sigma/bit = (0.53 \pm 0.04) \cdot 10^{-13} cm^2$

Detector

To DAQ Data+Trac LHCb EVENT BUILDER

<3µs

A. Contu

F. Dordei P. Muzzetto

HLT

+ (smog)

+(smog?) + (smog)

Downstroam Tracker

Patch Panel

Monitoring

++

THE FUTURE: UPGRADE 2

Towards Upgrade 2

LHCb has started to study the possibility of operating up to an instantenaous luminosity of 2E+34 cm⁻²s⁻¹

Physics Motivations for an Upgrade 2

Table 10.1: Summary of prospects for future measurements of selected flavour observables for LHCb, Belle II and Phase-II ATLAS and CMS. The projected LHCb sensitivities take no account of potential detector improvements, apart from in the trigger. The Belle-II sensitivities are taken from Ref. [608].

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	-
R_{K^*} $(1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	-
$R_{\phi}, R_{\mu K}, R_{\pi}$	-	0.08, 0.06, 0.18	-	0.02, 0.02, 0.05	-
CKM tests					
γ with $B^0 \rightarrow D^+ K^-$	$(^{+17}_{-22})^{\circ}$ [136]	4°	_	1°	_
γ , all modes	$(^{+5.0}_{-22})^{\circ}$ [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_0^0$	0.04 [609]	0.011	0.005	0.003	_
ϕ_{s} , with $B_{s}^{0} \rightarrow J/\psi\phi$	49 mrad [44]	14 mrad	-	4 mrad	22 mrad [610]
ϕ_s , with $B^0 \to D^+ D^-$	170 mrad [49]	35 mrad	_	9 mrad	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad	_	11 mrad	Under study [611]
$a_{\rm el}^s$	33×10^{-4} [211]	$10 imes 10^{-4}$	_	$3 imes 10^{-4}$	-
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%	-
$B^0_*, B^0 { ightarrow} \mu^+ \mu^-$					
$\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-)/\mathcal{B}(B^0_* \rightarrow \mu^+ \mu^-)$	90% [264]	34%	_	10%	21% [612]
$\tau_{B^0 \rightarrow u^+ u^-}$	22% [264]	8%	_	2%	_
$S_{\mu\mu}^{a}$	_	_	-	0.2	-
$h \rightarrow c \ell^- \bar{u}$ LUV studies					
$R(D^{*})$	0.026 [215 217]	0.0072	0.005	0.002	_
R(D) $R(J/\psi)$	0.020 [210, 211] 0.24 [220]	0.071	0.000	0.02	_
Gilan	0.21 [220]	0.011		0.02	
Charm	0 5 10-4 [019]	1 7 10-4	5 4 × 10-4	2.0×10^{-5}	
$\Delta A c (\kappa \kappa - \pi \pi)$	8.5×10^{-4} [013]	1.7×10^{-5}	5.4×10^{-4}	3.0×10^{-5}	-
$A_{\Gamma} (\approx x \sin \phi)$	$2.8 \times 10^{-5} [240]$	4.3×10^{-9}	3.3×10^{-4}	1.0×10^{-5}	-
$x \sin \phi$ from $D^- \to K^- \pi$	13 × 10 - [228]	3.2×10^{-5} (K2m) 4.0×10^{-5}	$(K^0 \pi \pi)$ 1.0 \times 10 ⁻⁴	$(K^{2}\pi) \approx 0 \times 10^{-6}$	-
$x \sin \varphi$ from multibody decays	_	$(N_{0}\pi) = 0 \times 10^{-5}$	$(\mathbf{n}_{\rm S}\pi\pi)$ 1.2 × 10	$(\mathbf{A} \circ \pi) \circ 0 \times 10^{\circ}$	-

Physics Case for an LHCb Upgrade II

Opportunities in flavour physics, and beyond, in the HL-LHC era

CERN-LHCC-2018-027 LHCB-PUB-2018-009

Cagliari, 11DEC19

Cagliari, 11DEC19

A. Cardini / INFN Cagliari

<u>Pixel with ps timing \rightarrow TIMESPOT</u>

- At the end of 2015 we started to think of the possibility of developing ultra-fast silicon sensors. The first step was a PRIN proposal prepared by some of the LHCb Italian groups
- In 2017 we decided to write a proposal for a CSN5 CALL, aiming at the development of a prototype of a solid-state 4D tracker with real-time tracking capabilities
- This proposal attracts many persons and not only within LHCb \rightarrow 20 FTE, 1/3 from LHCb
- Approved in September 2017, activity takes off in 2018
- Excellent opportunity in a very competitive international scenario, extremely interesting for future experiments operating at very high instantaneous luminosity

Conclusions

- LHCb continues to produce lot of <u>excellent physics results</u>
- Upgrade work is proceeding as expected, data taking will start in 2021
- Cagliari Group members continue to play <u>important roles</u> inside INFN and within the Collaboration
- Personnel continue to increase, both in Cagliari, in Italy and overall in the Collaboration
 → The Cagliari Group is today among the largest LHCb groups in Italy
- We have started to look at the <u>future upgrade</u> to exploit even better what LHC can provide, and we have started new exciting activities
- The future of flavor physics at very high statistics is extremely challenging: with the experience
 accumulated so far and the new R&D opportunities that have already started <u>LHCb will continue to play a
 leading role in this field</u>

