Measurement of CP-violating phase ϕ_s in the LHCb experiment

11/12/2019, mini-simposio fisica delle alte energie

Piera Muzzetto

Supervisors: A.Cardini, F.Dordei

Introduction: the problem of matter-antimatter asymmetry

Problem: our Universe is made almost entirely from matter... So where is the antimatter?

Necessary ingredient: violation of the CP simmetry (CPV)!

 $V_{qq'} \neq V_{\overline{q}\overline{q}'}^* \Rightarrow$ The only CPV source in the SM! **Not enough** to explain the matter-antimatter asymmetry.

Possible existance of new CPV sources not described by the SM

Perform many mesurements of CP violation to test the SM

Introduction: CP violation in the Standard Model

Theory prediction: $\phi_s^{SM} \approx -0.03686^{+0.00096}_{-0.00068}$ rad

Very precise so perfect to search for new sources of CP violation!

Measurement of ϕ_s : state of the art

LHCb: $\phi_s = -0.040 \pm 0.025$ rad

Combined: $\phi_s = -0.055 \pm 0.021$ rad

Decay channels for $\phi_{\scriptscriptstyle S}$ measurement at LHCb

$$B_S^0 \to J/\psi K^+ K^-$$

$$B_S^0 \to J/\psi \pi^+ \pi^-$$

$$B_S^0 \to D_S D_S$$

$$B_S^0 \to \psi(2S) \phi$$

The decay investigated by me is $B_s \to J/\psi \pi^+ \pi^-$

Measurement of ϕ_s : analysis strategy

Definition of time-dependent CP asymmetry: $A_{CP}(t) = \frac{\Gamma(\bar{B}_S^0 \to f) - \Gamma(B_S^0 \to f)}{\Gamma(\bar{B}_S^0 \to f) + \Gamma(B_S^0 \to f)} = \eta_f \sin \phi_S \sin(\Delta m_S t)$

Experimentally it becomes: $A_{CP}(t) = \eta_f \cdot e^{-\frac{1}{2}\Delta m_S^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \sin \phi_S \cdot \sin(\Delta m_S t)$

Measurement of ϕ_s : where? The LHCb experiment

Single arm spectrometer designed for high precision flavour physics measurements!

Piera Muzzetto

Measurements of ϕ_s using $B_s^0 \to J/\psi \pi^+ \pi^-$ channel

Analysis already done with 2015-2016 data.

Current value with this channel $\phi_s = -0.057 \pm 0.060 \pm 0.011 \,\text{rad}$ NO CPV To be improved to test SM •—— [https://arxiv.org/pdf/1903.05530.pdf]

My work: Addition of 2017 2018 data to gain a factor 3 of statistical power.

- Candidates selection
- Measurement of decay time resolution
- Flavour tagging performances
- Study of angular and time acceptances
- Final fit to determine φ_s

Done in Cagliari

Will be done from Tsinghua University

6/7 Piera Muzzetto

Expected precision of ϕ_s in $B_s^0 o J/\psi \pi \pi$ analysis with full RUN2 data

Preliminary results

Number of candidates:

- $2015:4700 \pm 90$
- $2016:31300 \pm 200$
- $2017: 27500 \pm 200$
- $2018:38200 \pm 250$

$$\phi_s = -0.057 \pm 0.060 \pm 0.011 \text{ rad}$$
[https://arxiv.org/pdf/1903.05530.pdf]

This analysis with data from 2015 to 2018:

$$\phi_s = xxx \pm 0.036 \pm xxx \text{ rad}$$

NB:
$$\varphi_s^{SM} \approx -0.03686^{+0.00096}_{-0.00068}$$
 rad

Very important improvement expected on ϕ_s precision using RUN2 data using just this channel!

BACKUP

BACKUP

Sakharov Conditions

[A. D. Sakharov, JETP Lett.5, 24 (1967)]

- 1. Baryon Number Violation
- 2. C and CP violation
- 3. Interactions out of thermal equilibrium

- \circ Baryon asymmetry of the Universe: $n_b/n_{\nu} \sim 10^{-10}$
- CP violation in the SM does not account for it
- There must be New Physics and new sources of CP violation

[Rev. Mod. Phys. 88, 015004 (2016)]

BACKUP

Single arm spectrometer designed for high precision flavour physics measurements!

Introduction: CP violation in the Standar Model

In the Standard Model (SM) quark can transform into another quark thanks to the weak interaction:

The probability for such a transition depends on the elements of Cabibbo-Kobayashi-Maskawa (CKM) matrix:

If
$$V_{qq'} \neq V_{\bar{q}\bar{q}'}^* \Rightarrow$$
 There is CPV

This is the **only CPV source** in the SM!
But **it is not enough** to explain the matter-antimatter asymmetry.

It is possible that there are new CPV sources not described by the SM

Perform many mesurements of CP violation to test the SM

Introduction: CP violation in the Standard Model

Asking for conservation of probability $\Rightarrow V_{CKM}V_{CKM}^{\dagger} = 1$

$$V_{CKM} = \left(egin{array}{cccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight)$$

Unitarity condition from 2nd and 3rd columns:

$$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$

The area of triangle gives information about the magnitude of CP violation!

Control of penguin pollution

$$\phi_{S} = \overbrace{\phi_{S}^{SM}} + \Delta \phi_{S}^{peng} + \Delta \phi_{S}^{NP}$$

$$-2\beta_{S}$$

Important channels:

•
$$B_s^0 \rightarrow J/\psi K^*$$

•
$$B_s^0 \rightarrow J/\psi K^*$$

• $B^0 \rightarrow J/\psi \rho^0$

Precision of ~10 mrad of penguin contribution of ϕ_s To be compared with the current precision of HFLAV of 21 mrad

Analysis: data available until now at LHCb

Large number of beauty hadrons:

$$\sigma_{b\bar{b}}(7 \text{ TeV}) = 72.0 \pm 0.3 \pm 6.8 \text{ }\mu\text{b}$$

 $\sigma_{b\bar{b}}(13 \text{ TeV}) = 154.3 \pm 1.5 \pm 14.3 \text{ }\mu\text{b}$
[PRL 118 (2017) 052002]

Measurement made with 2015 and 2016 data

$$\varphi_s = -0.057 \pm 0.060 \pm 0.011 \text{ rad}$$
[https://arxiv.org/pdf/1903.05530.pdf]

Scaling considering lumi from 2015 to 2018: $\varphi_s = -0.057 \pm 0.035 \pm 0.011$ rad

NB:
$$\varphi_s^{SM} \approx -0.03686^{+0.00096}_{-0.00068}$$
 rad

New measurements are fundamental to test the SM

Prospects for the future

• Additional modes planned: $J/\psi \to ee$, $\eta' \to \rho^0 \gamma$ or , $\eta' \to \eta \pi \pi$ or $\gamma \gamma$ as cross cheks

300/fb: $\sigma^{STAT}(\phi_s) \sim 4 \text{ mrad from } B_s^0 \rightarrow J/\psi KK$ only

NB:
$$\phi_s^{SM} \approx -0.03686^{+0.00096}_{-0.00068}$$
 rad

Introduction: CP violation in the Standard Model

The CKM matrix can be described by 4 parameters: λ , A, ρ , η

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix}$$

$$= \begin{pmatrix} 1 - \lambda^{2}/2 - \lambda^{4}/8 & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda + A^{2}\lambda^{5} \left[1 - 2(\rho + i\eta)\right]/2 & 1 - \lambda^{2}/2 - \lambda^{4}(1 + 4A^{2})/8 & A\lambda^{2} \\ A\lambda^{3} \left[1 - (\rho + i\eta)(1 - \lambda^{2}/2)\right] & -A\lambda^{2} + A\lambda^{4} \left[1 - 2(\rho + i\eta)\right]/2 & 1 - A^{2}\lambda^{4}/2 \end{pmatrix} + \mathcal{O}(\lambda^{6})$$

Wolfenstein parametrisation

$$\lambda = \sin(\theta_c) \approx 0.22, \ \eta \approx 0.3$$

 η is the only CPV source in the SM!

But **it is not enough** to explain the matter-antimatter asymmetry.

It is possible that there are new CPV sources not described by the SM

Test the consistency of CKM within SM experimentally

Mixing phenomena:

during its time evolution a B_s^0 can tranform into its antiparticle.

Therefore the hamiltonian eigenstates are different from the interaction states and are known as mass eigenstates B_L and B_H and they can be written as their linear combination:

$$\begin{split} |B_H\rangle \propto p \left|B_q^0\right> + q \left|\overline{B}_q^0\right> \\ |B_L\rangle \propto p \left|B_q^0\right> - q \left|\overline{B}_q^0\right> \\ \\ \left|B_q^0(t)\right> \propto \frac{1}{2p} \left(|B_L(t)\rangle + |B_H(t)\rangle\right) \\ \\ \left|\overline{B}_q^0(t)\right> \propto \frac{1}{2q} \left(|B_L(t)\rangle - |B_H(t)\rangle\right) \end{split}$$
 where
$$\begin{split} |B_{H/L}(t)\rangle \; = \; e^{-iM_{H/L}\,t}\,e^{-\Gamma_{H/L}\,t/2} \left|B_{H/L}\right> \quad \text{with} \quad \Gamma_q \;\; = \;\; \frac{\Gamma_L + \Gamma_H}{2} \equiv \frac{1}{\tau} \;, \end{split}$$

Theoretical outline: Direct CP violation in $B_s^0 \rightarrow J/\psi hh$ decay

CP violation in decay: $B \to f$ probability is different from that of $\bar{B} \to \bar{f}$ Due to a phase arising from interference of two diagrams

Theoretical outline: CP violation in mixing

CP violation in mixing: $B \to \bar{B}$ probability different from that of $\bar{B} \to B$ Due to different phasis arising from interference of two diagrams

$$|B(t)\rangle = g_{+}(t) |B\rangle + \frac{q}{p} g_{-}(t) |\bar{B}\rangle$$
$$|\bar{B}(t)\rangle = \frac{p}{q} g_{-}(t) |B\rangle + g_{+}(t) |\bar{B}\rangle$$

No violation if $^q/_p \sim 1$, true for B_s^0 for which $|^q/_p| = 1.0003 \pm 0.0014$

Theoretical outline: CP violation in interference between mixing and decay

Interference between mixing and decay is due to different decay rate between $B_s^0 \to f$ and $B_s^0 \to \overline{B_s^0} \to \overline{f}$

Arising from a phase parameter $\phi_s = -2\arg({}^{-V_{ts}V_{tb}^*}/{}_{V_{cs}V_{cb}^*})$ (SM, ignoring penguin contributions)

Very accurate
$$\leftarrow 2 \arg \left(\frac{-V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} \right) = -0.03686_{-0.00068}^{+0.00096} \text{ rad}$$

Parameter very sensitive to new physics effects, as the presence of a new particle in the box diagram