Mini-symposium of High Energy Physics Cagliari, 11/12/2019

Searching for New Physics with rare charm decays at LHCb

Davide Brundu

-

Istituto Nazionale di Fisica Nucleare

Introduction and Outline

Brief presentation

I am about to finish the PhD in Cagliari, within the LHCb group. The main activities I was involved in are:

- Upgrade of readout system and readout electronics,
- Maintanace of GEM detectors,
- Radiation hardness test of readout electronics,
- Data analysis on rare charm decays.

Outline

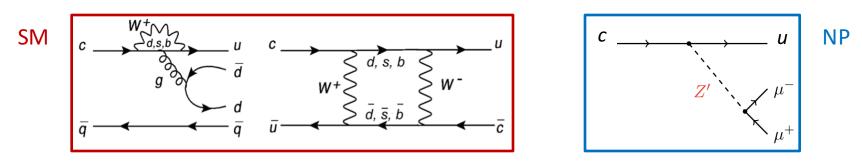
- Theoretical introduction
- LHCb experiment
- Status of the $D^0 \rightarrow h^+h^-\mu^+\mu^-$ (h = K, π) angular analysis
- Other rare charm measurements from LHCb
- Conclusions

Why flavour physics?

- Several open questions in Standard Model comes from flavour sector, i.e.
 - Why three generations of quarks/leptons?
 - Origin of the mass hierarchy for different flavours;
 - Explanation of the matter antimatter asymmetry in the universe.
- The Standard Model (SM) is an effective theory at low energy

$$\mathcal{H} = \mathcal{H}_{SM} + \alpha \sum_{i} \mathcal{C}_{i}^{NP}(\mu) \mathcal{O}_{i}(\mu)$$
New couplings
(Wilson coeff.)
New operators

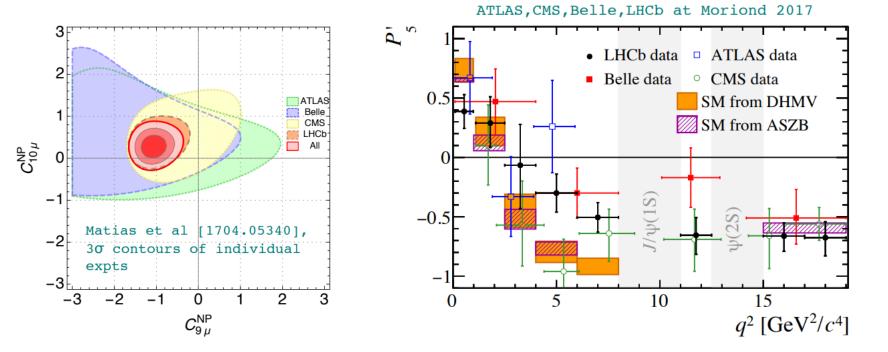
 Effects of new particles or interactions can be probed with high precision measurements at low energy in flavour processes (*indirect search*)

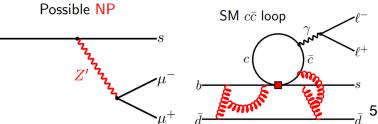

$$\mathcal{A}_{i \to j} = \mathcal{A}_0 \left[\frac{c_{SM}}{M_W^2} + \underbrace{\begin{matrix} c_{NP} \\ \Lambda^2 \end{matrix} \right]$$
 New Physics (NP) scale

Why rare decays?

 Very small rate (branching fractions) because highly suppressed in the SM, excellent laboratories to probe NP effects

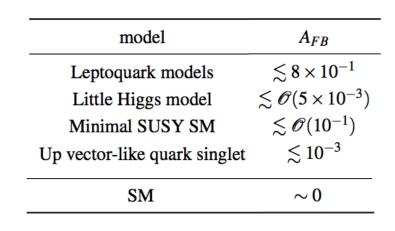
$$\mathcal{A}_{i
ightarrow j} = \mathcal{A}_0 \left[egin{array}{c} c_{SM} + c_{NP} \ M_W^2 \ \sim 0 \end{array}
ight. + egin{array}{c} c_{NP} \ \Lambda^2 \ \sim 0 \end{array}
ight]$$

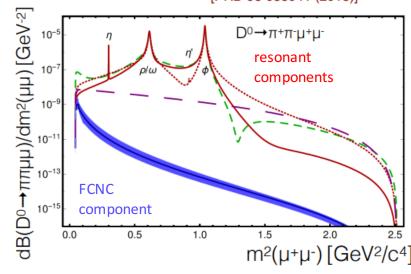

• Flavour changing neutral current (FCNC) processes, as $c \rightarrow u$, are possible only at high order in the SM. Branching fraction $< 10^{-9}$


- Two main effects from NP
 - enhancing branching fractions,
 - modifying angular distributions.

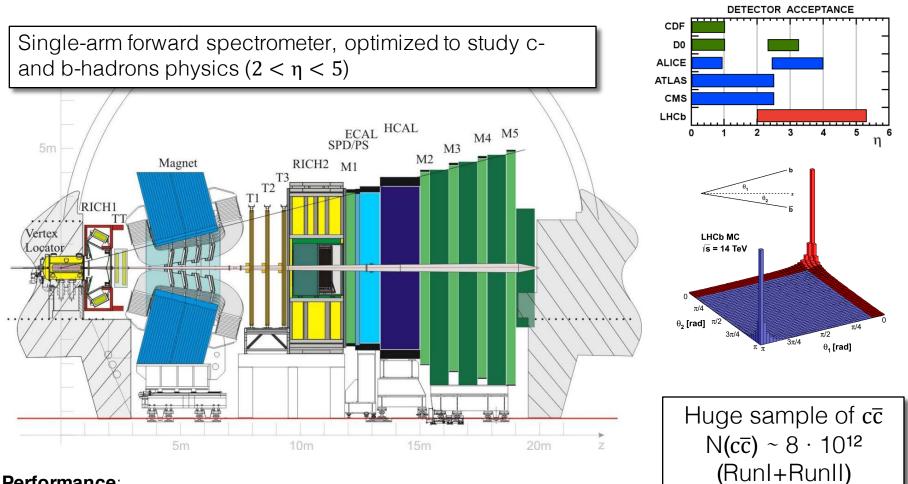
Interesting results from B physics

- Angular analysis of the rare decay $B^0 \rightarrow K^{*0}\mu^+\mu^-$. The angular coefficient P'_5 (exp. observable) shows an interesting anomaly.
- Global fits show deviation for the Wilson coefficient C_9 , tension at level of $4-5\sigma$




- Several attempts to interpret the data:
 - New boson Z', leptoquarks, etc.
 - SM loop of $c\bar{c}$ can mimic corrections to C_9 .

Why shall we use charm decays?


- Promising, some NP models predict large enhancements for branching fractions and angular observables [PRD 83 114006 (2011)] [PRD 98 035041 (2018)]
- Unique probe of NP in the up-type quark sector, complementary to B and K systems; No angular study in rare charm decays so far.
- Challenging, non-perturbative SM dynamics (resonance states) dominate the decay rate, hiding FCNC processes → large theoretical uncertainties,
 - \rightarrow Studies on angular distribution are more sensitive to NP.

[PRD 98 035041 (2018)]

LHCb experiment

Performance:

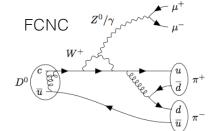
- · Momentum resolution: 0.35% (at 5 GeV/c) 0.55% (at 100 GeV/c)
- Mass resolution: 10-25 MeV/c²
- · Impact parameter resolution: 20 μ m for high-p_T tracks
- · Excellent particle ID: two RICH detectors and Muon stations ($\epsilon(\mu) \approx 97\%$, $\epsilon_{misID}(\pi \rightarrow \mu) \approx 3\%$))

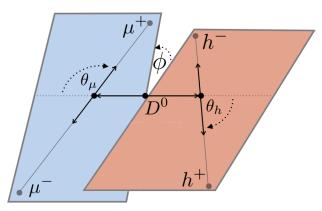
$D^0 \rightarrow h^+h^-\mu^+\mu^-$ (h = K, π) decays

Final state observed by LHCb: the rarest charm decay observed, compatible with SM. [PRL 119(2017)181805] [JHEP 04(2013)135]
 FCNC = z⁰/y - x^{μ+}

 $\mathcal{B}(D^0 o \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \cdot 10^{-7}$

 $\mathcal{B}(D^0 o K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \cdot 10^{-7}$


- Dominated by non-perturbative resonant dynamics, several possible resonant states.
- Four-body decay = 5-dimensional phase space, $m(h^+h^-)$, $m(\mu^+\mu^-)$, $cos(\theta_{\mu})$, $cos(\theta_{h})$, ϕ
- Full angular parametrization


$$d^{5}\Gamma = rac{1}{2\pi} \Bigg[\sum_{i=1}^{9} c_{i}(\theta_{\mu}, \phi) I_{i}(q^{2}, p^{2}, \theta_{h}) \Bigg]$$

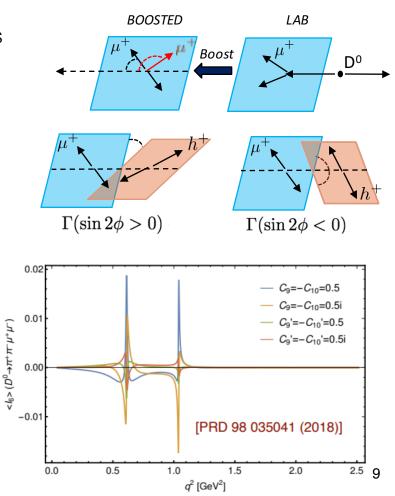
known 2-D function of angles \rightarrow orthogonal angular basis

9 angular coefficients to be measured $I_{5,\ldots,9}$ are ~null in the SM

 $\cdot dq^2 dp^2 d(\cos heta_\mu) d(\cos heta_h) d\phi_h$

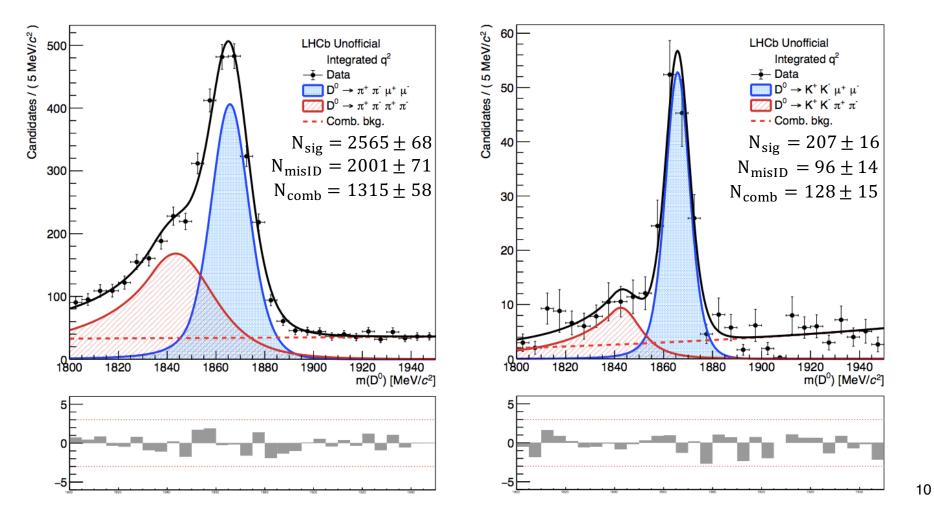
Analysis goal

- 1. Measure the angular coefficients as function of $q^2 = m^2(\mu^+\mu^-)$ with full Run II sample (2015-2018). Two times more statistics w.r.t previous analysis. [PRL121 (2018) 091801]
- 2. Inclusion of Run I dataset (2011-2012) \rightarrow three times more statistics.
 - Some coefficients are related to angular asymmetries

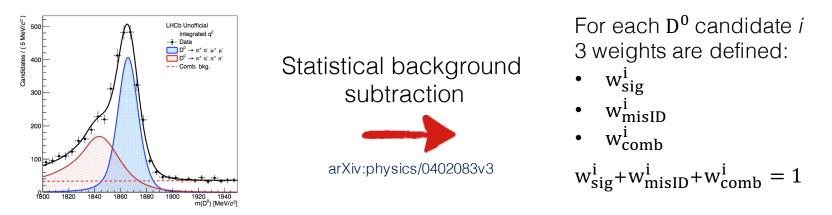

$$A_{\rm FB} = \frac{\Gamma(\cos\theta_{\mu} > 0) - \Gamma(\cos\theta_{\mu} < 0)}{\Gamma(\cos\theta_{\mu} > 0) + \Gamma(\cos\theta_{\mu} < 0)} \propto \langle I_6 \rangle$$

$$A_{2\phi} = \frac{\Gamma(\sin 2\phi > 0) - \Gamma(\sin 2\phi < 0)}{\Gamma(\sin 2\phi > 0) + \Gamma(\sin 2\phi < 0)} \propto \langle I_9 \rangle$$

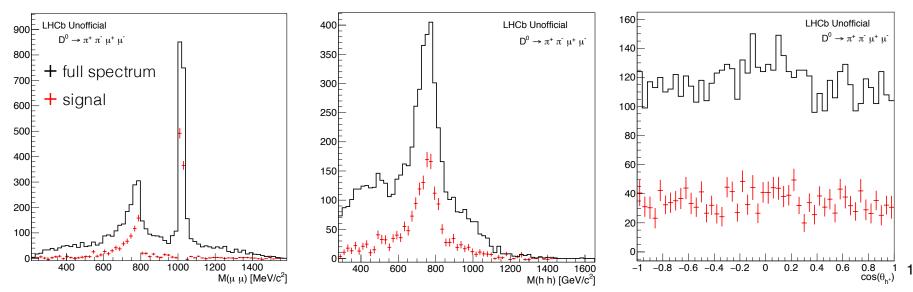
$$A_{\phi} = rac{\Gamma(\sin \phi > 0) - \Gamma(\sin \phi < 0)}{\Gamma(\sin \phi > 0) + \Gamma(\sin \phi < 0)} \propto \langle I_7
angle.$$


Possibility to make the CP asymmetry measurement

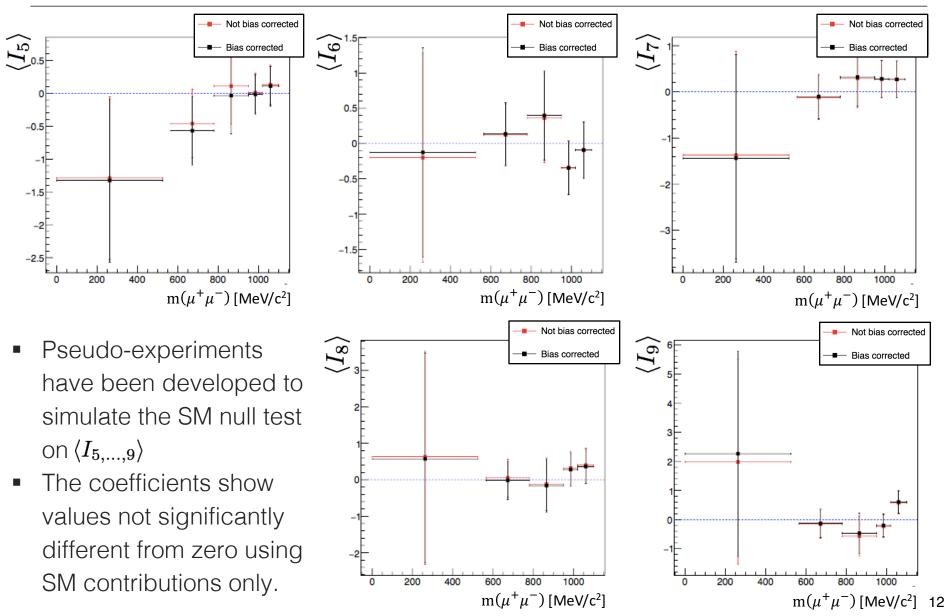
$$A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$$


D^0 invariant mass fit

- After reconstruction and D^0 decays selection we are able to observe the signal. Two sources of background: combinatorial and doubly misidentified $D^0 \rightarrow h^+h^-\pi^+\pi^-$
- More than two times more statistics with respect to the 2011-2016 data set



Background subtraction


• The angular distributions are polluted by the two background components

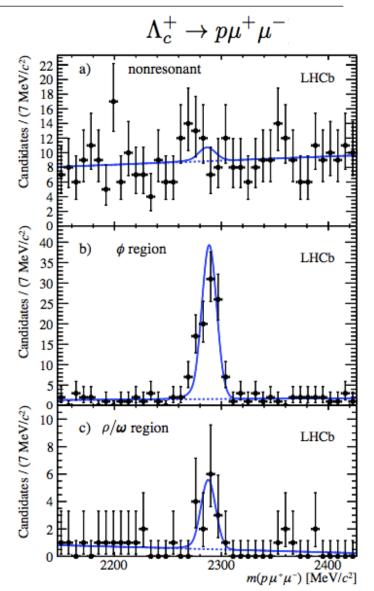
• Example of background subtraction on the three phase-space variables, not used in the angular fit: $m(h^+h^-), m(\mu^+\mu^-), \cos(\theta_{\pi})$

Angular fit validation: SM null test results

Other measurements from LHCb

• Search for $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$

Upper limit on non-resonant component


 $\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-) < 9.6 \times 10^{-8} 95\% \text{ CL}$

~1000× better than previous result from BaBar [PRD 84 (2011) 072006]

and first observation in the ρ/ω region of the dimuon spectrum.

Ongoing with Run II data.

- Search for $D^0 \rightarrow \mu^+ \mu^-$ Current limit by LHCb with 0.9 fb⁻¹ of 2011 dataset [PLB (2013) 725]
- ${\cal B}(D^0 o \mu^+ \mu^-) < 6.2(7.6) imes 10^{-9} {
 m ~at~} 90\% ~(95\%) {
 m ~CL}.$ Ongoing with Run II data.
- Other analyses currently ongoing:
 - Search for $D_{(s)}^+ \rightarrow h^+ l^+ l^-$
 - Radiative decays $D^0 \rightarrow \{\rho, \varphi\}\gamma$
 - Search for $D^0 \rightarrow h^+h^-e^+e^-$

Conclusions

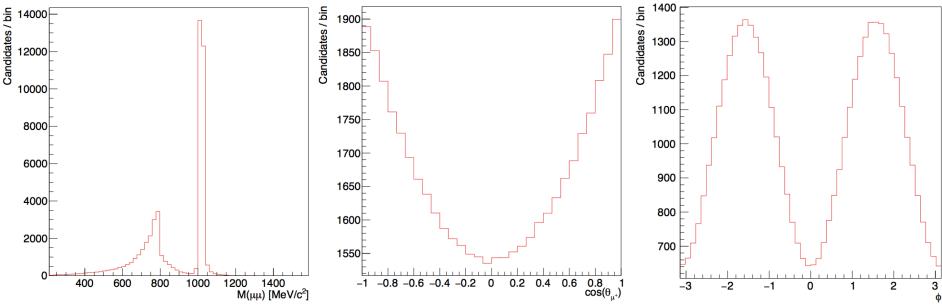
About this analysis

- Angular analysis in a well advanced status,
- Dominated by statistical uncertainty,
- This will be the first angular analysis in a rare charm decay, lot of interest from theorists.
- Most of the C++11 code developed using Hydra libraries, a framework for data analysis in parallel platforms (GPU)

https://github.com/MultithreadCorner/Hydra

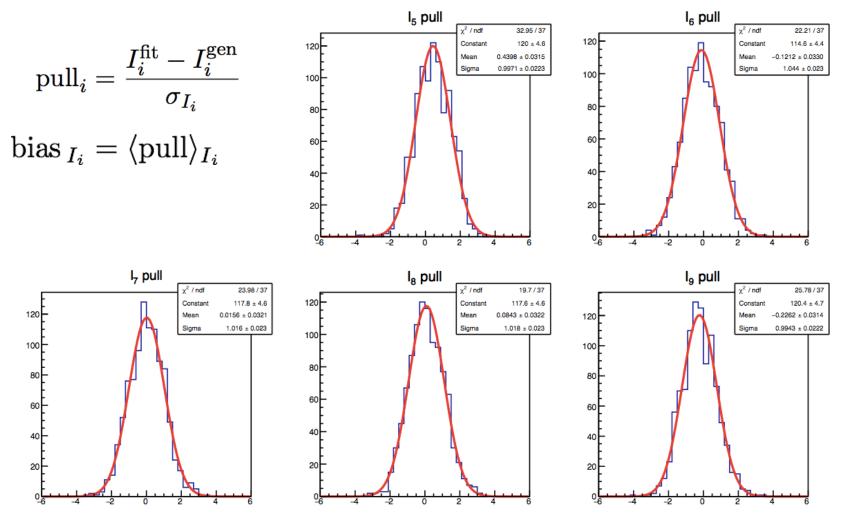
Rare charm decays

- Progress over the years, LHCb leading in the field,
- Started to probe SM regimes, rates $\sim 10^{-8}$,
- Started to look also into final states with electrons,
- Expected some results in radiative decays, measured recently by Belle, PRL 118, 051801 (2017), A_{CP} precision ~ 2%-15%.

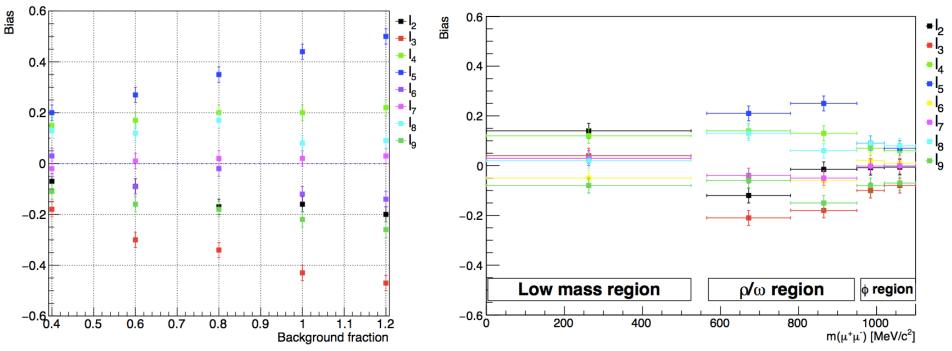

Backup slides

Angular fit validation: amplitude model

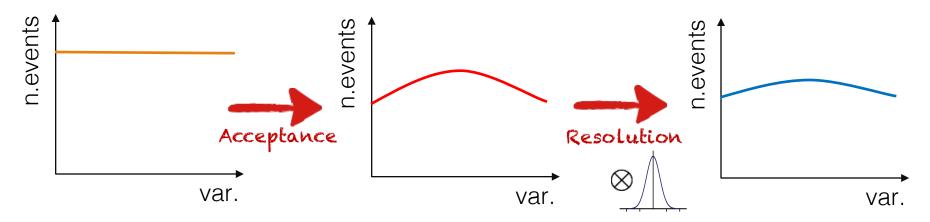
- Amplitude model for the $D^0 \to \pi^+ \pi^- \mu^+ \mu^ W_{if} = \frac{2\pi}{\hbar} |M_{if}|^2$ $M_{if}^{(k)} = 4$ -body non resonant $+ \sum_{k=1}^{\infty} Resonant$
- Three configurations are considered: $D^0 \to \rho \, \rho$, $D^0 \to \rho \, \phi$, $D^0 \to a_1^\pm \pi^\mp$


 ~ 0

• Generated distributions using the amplitude model

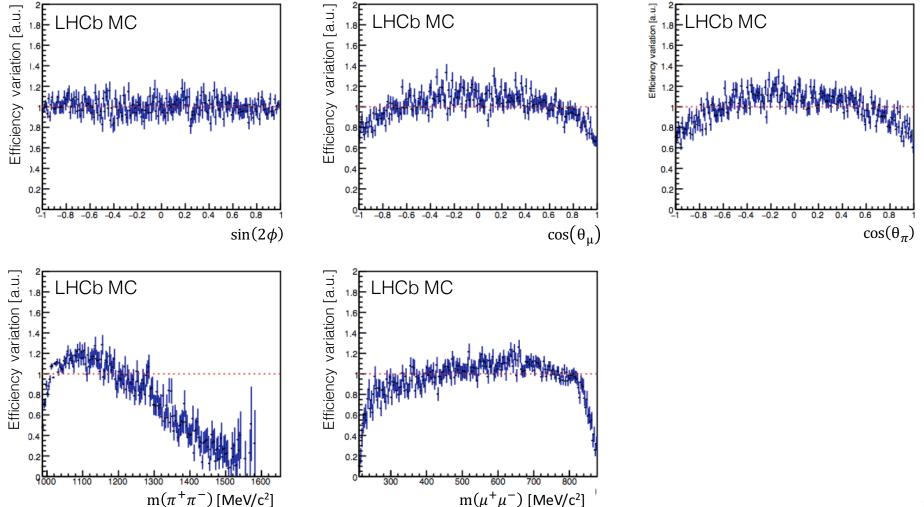

Angular fit validation: pseudo-experiments

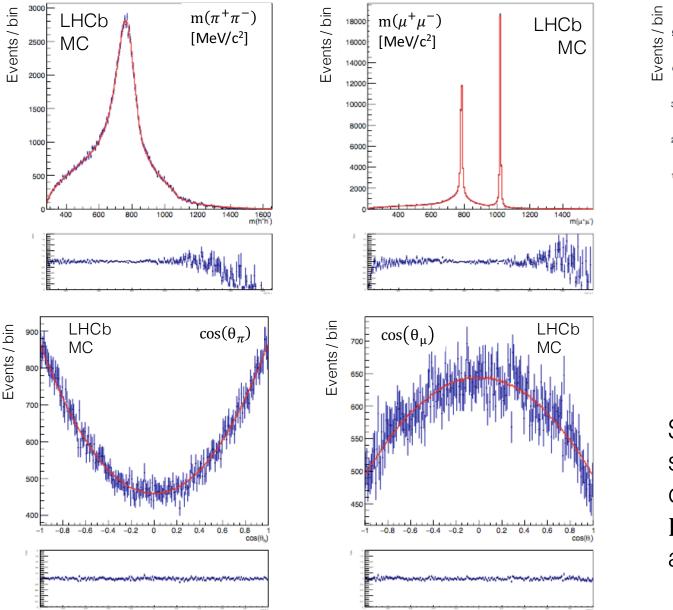
- Pull distributions after 1000 pseudo-experiments
- Gaussian with σ compatible with 1, mean values show small biases

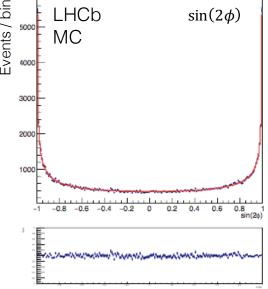


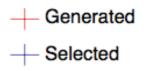
Angular fit validation: pseudo-experiments

- The biases do not exceed 0.5 σ_{I_i}
- For some coefficient the bias increases as a function of the background pollution
- Possibility to change the D⁰ selection to further reduce the background fraction


Detector acceptance, reconstruction and selection can introduce efficiency and resolution effects as a function of the phase space region.



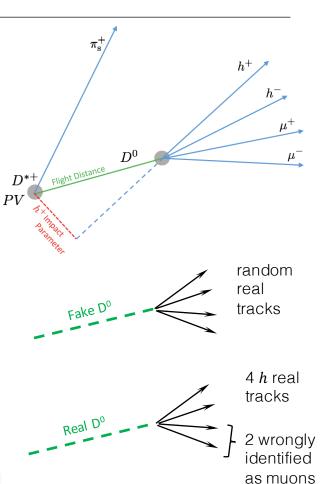

- In order to get the correct angular distributions we have to correct for these effects in the **5-D** phase space \rightarrow reweight selected data
- A reweighter BDT is used to reduce the problem to **1-D** reweighting



• Projections of the phase-space dependent efficiency for $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$

Simulated phasespace variable distributions for $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^$ after the reweighting

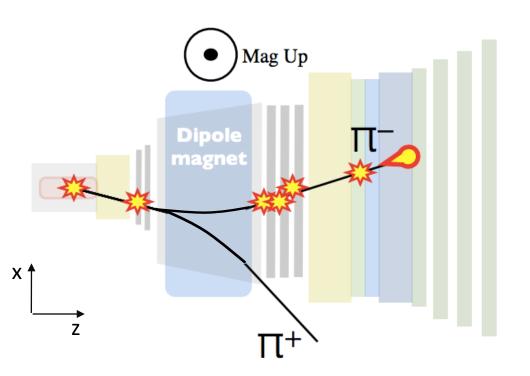
Analysis strategy

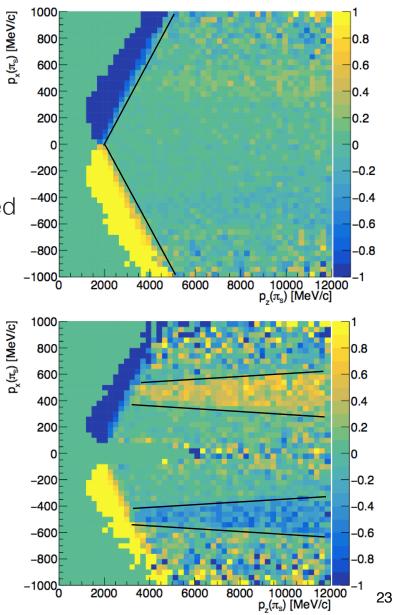

Preliminary data Selection

- Select D^0 and \overline{D}^0 from the decay $D^{*\pm} \to D^0 \pi_S^{\pm}$ It allows to use the observable $\Delta M = m(D^{*+}) - m(D^0)$
- Required good quality of vertices and daughter tracks, required Particle Identification of hadrons and muons.

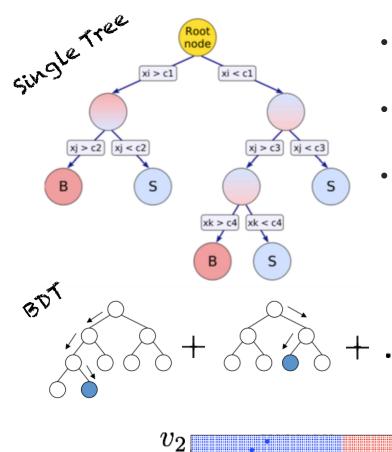
Multivariate classifier against combinatorial background,

• muon PID cut against doubly misidentified $D^0 \rightarrow 4 \pi$

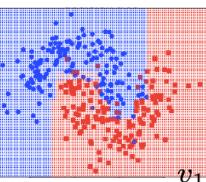


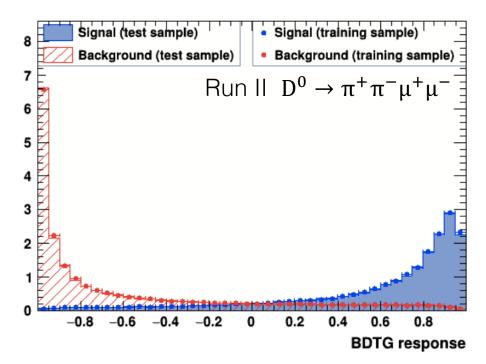

Angular coefficients measurements

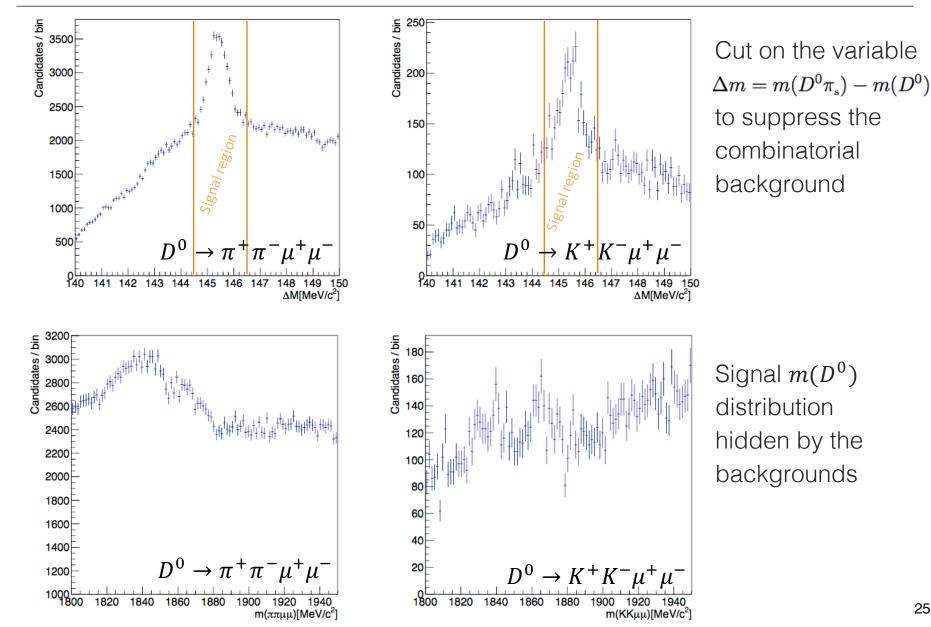
- Fit on invariant mass $m(h^+h^-\mu^+\mu^-)$
- Fit on angular distributions background subtracted
- Correction for phase-space-dependent efficiencies

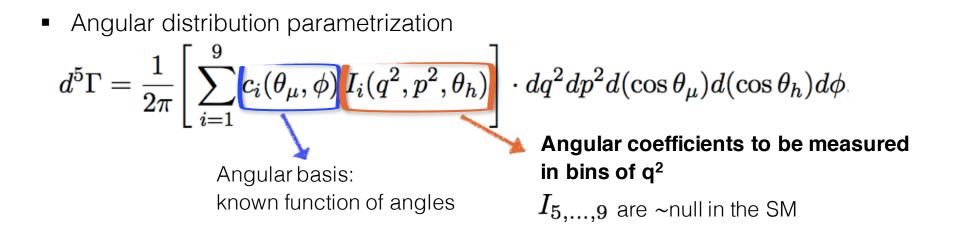

Soft pion charge asymmetry

- For specific regions of phase space, the soft pion of a given charge is bent outside the detector acceptance
- The asymmetry can introduce higher-order effects in D⁰ angular distributions
- The involved phase space regions are excluded




Reduce the combinatorial background


An example of classification using two variables


- Multivariate statistical method (machine learning)
 to classify signal and background
- Decision Tree: sequential nested cuts on given variables (kinematical and geometrical)
- Boosted Decision Tree: single output using many trees

Run II data after the pre-selection

Angular fit development

• Since we are not interested in the normalization but in the distribution shape only the first coefficient can be fixed in the fit. Equivalent to redefine $I'_i \propto I_i/I_1$

$$pdf = 1 + \frac{1}{2\pi} \sum_{i=2}^{9} c_i(\theta_\mu, \phi) \ \langle I'_i \rangle(q^2)$$

To fit in the 2-D space $cos(\theta_{\mu}) - \phi$

• The SM null test for $\langle I_{5,...,9} \rangle$ are not affected by the rescaling

Angular fit validation: pseudo-experiments

- Before perform the fit on real data we must validate the procedure;
- A complete pseudo-experiment chain has been developed
 - Simple amplitude model to generate and emulate a realistic angular distribution of the signal, add the efficiency effect,
 - 2. Adding the real background (misID and combinatorial) from Run II DATA,
 - 3. Correct for the efficiency effect,

 $\text{pull}_i = \frac{I_i^{\text{fit}} - I_i^{\text{gen}}}{\tau}$

- 4. Perform the D⁰ mass fit and sWeights,
- 5. Perform the angular fit on the background subtracted distribution, Get the coefficient $\langle I_i'\rangle(q^2)$
- The pseudo-experiments allow to study possible bias in the fit

Pulls have to be distributed as normal distributions

Future prospects

- Analysis in a well advanced status, selection completed,
- Angular fit validated by a complet set of pseudo-experiment chains,
- The fit returns correctly null values for $\langle I_{5,...,9} \rangle$ corresponding to SM terms,
- Biases due to background and low statistics are well controlled,
- Dominated by statistical uncertainty,
- This will be the first angular analysis in a rare charm decay, lot of interest from theorists.

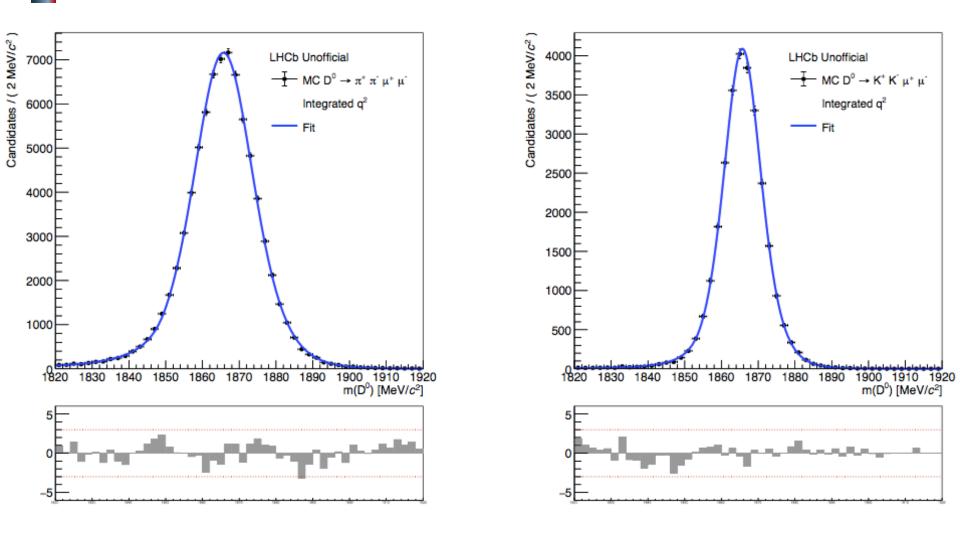
Future steps

- Check selection and investigate systematic sources
- Check MC-Data agreement
- Perform the measurement on real data

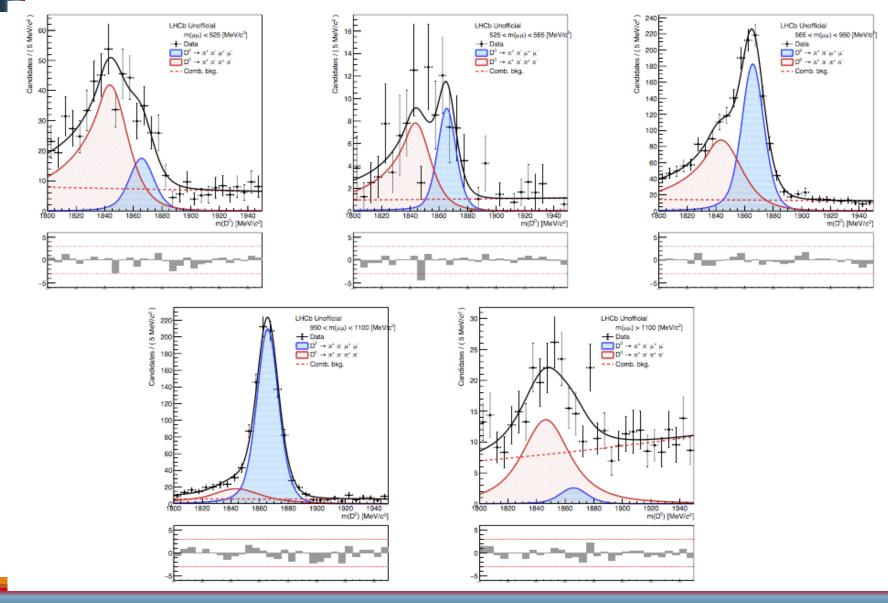
Angular basis

 $c_1 = 1, \ c_2 = \cos 2\theta_{\mu}, \ c_3 = \sin^2 \theta_{\mu} \cos 2\phi, \ c_4 = \sin 2\theta_{\mu} \cos \phi, \ c_5 = \sin \theta_{\mu} \cos \phi,$

 $c_6 = \cos \theta_{\mu}, \ c_7 = \sin \theta_{\mu} \sin \phi, \ c_8 = \sin 2\theta_{\mu} \sin \phi, \ c_9 = \sin^2 \theta_{\mu} \sin 2\phi.$

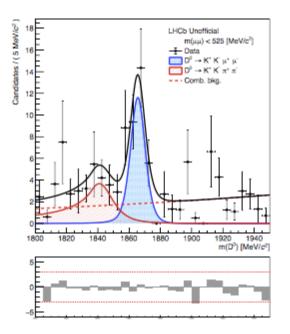

Hypathia PDF

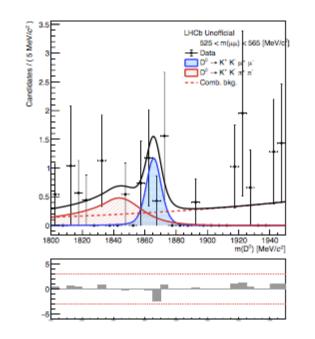
where K_{ν} is the modified Bessel function of the second kind, the parameter δ and α are defined as

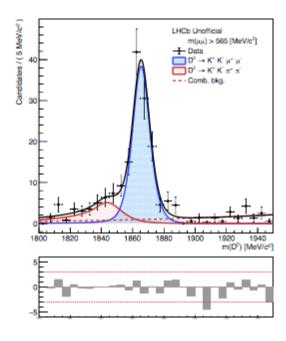

$$\delta = \sigma \sqrt{\xi K_{\lambda}(\xi)/K_{\lambda+1}(\xi)},$$

 $lpha = \sigma \sqrt{\xi K_{\lambda+1}(\xi)/K_{\lambda}(\xi)}/\sigma,$

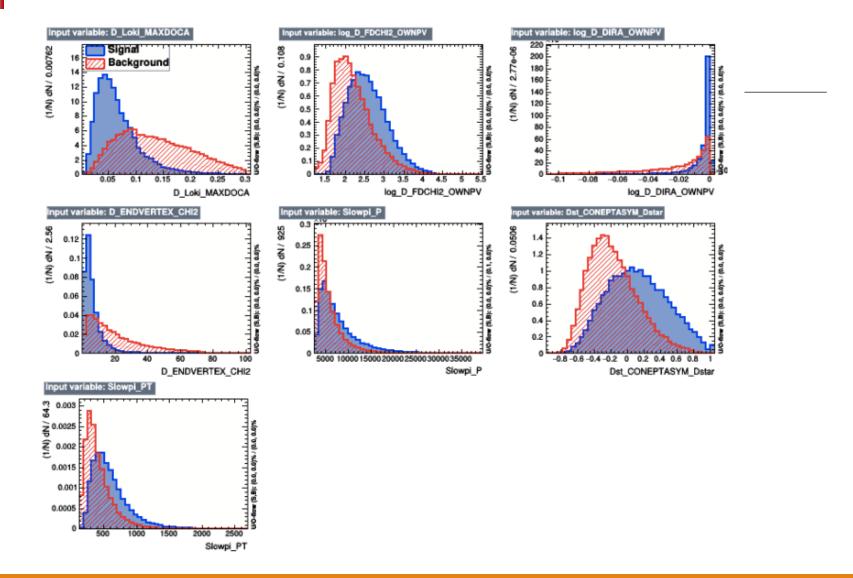
and the parameters A and B are obtained by imposing continuity and differentiability on the connection point $m = \mu - a\sigma$. The parameters μ describes the most probable values for the distribution core, while σ describes the mass resolution.


Signal shape from MC

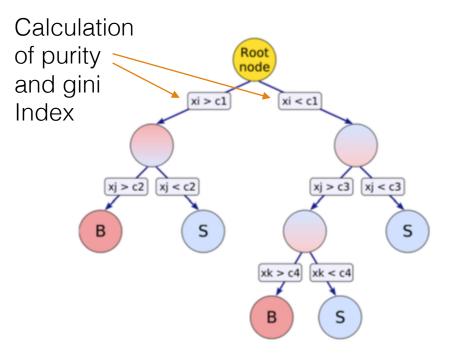



Fit on q^2 bins

Fit on q^2 bins



BDT input variables


- largest distance of closest approach of the D^0 daughters (D^0 MAXDOCA),
- logarithm of the $D^0 \chi^2_{\rm FD}$, $\log \chi^2_{\rm FD}(D^0)$,
- logarithm of the cosine of D^0 pointing angle, log DIRA(D^0),
- $\chi^2_{
 m vertex}$ of the D^0 decay,
- momentum of the $\pi_{\rm s}^+$, $p(\pi_{\rm s}^+)$,
- transverse momentum of the $\pi_{\rm s}^+$, $p_{\rm T}(\pi_{\rm s}^+)$,
- the D^* -cone p_{T} asymmetry.

BDT input variables

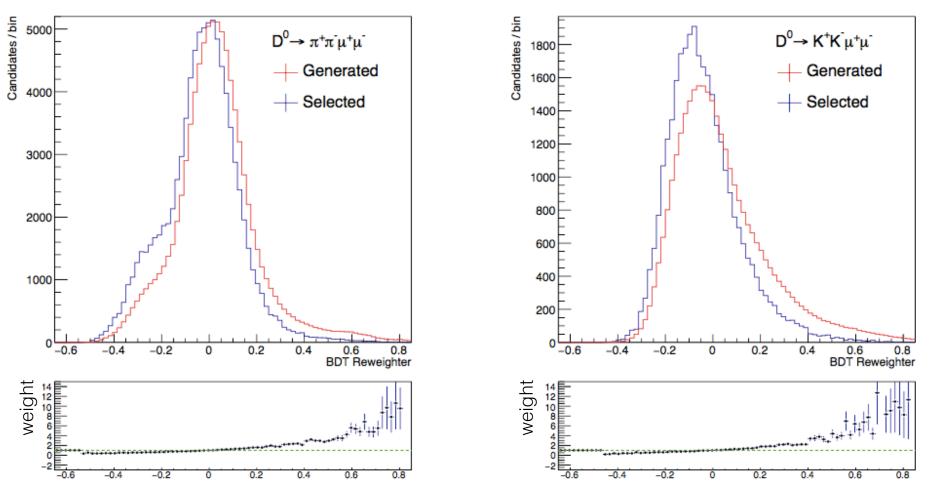
Boosted Decision Tree

- Advanced statistical method for events classification
- Simultaneous selection using many variables, taking into account all the correlations,
- Training sample using signal simulation and backgroud data
- Single output variable best signal-background separation

- Decision tree: sequential nested cuts
- Boosting: reweighting of events misidentified in the previous tree, and grow of a next
- Output variable as a "majority vote": how many tree classify the candidate as backgroud/signal?

Particle	Variable	Re	quirement
μ	p	>	3 GeV/c
	p_T	>	$300 \mathrm{MeV}/c$
	Track χ^2 /dof	<	5
	Impact-parameter χ^2	>	2
$\mu^+\mu^-$ combination	DOCA	<	$0.1\mathrm{mm}$
	$\sum p_T$	>	0. MeV/c
	$\overline{\mathrm{M}}(\sum p^{\mu})$	<	$2100 \mathrm{MeV}/c^2$
	PV		all from same
Dimuon object	Flight-distance χ^2	>	9
	Flight-distance	>	$0\mathrm{mm}$
	$M_{corrected}$	<	$3500 \mathrm{MeV}/c^2$
h^{\pm}	p	>	3 GeV/c
	p_T	>	$300 \mathrm{MeV}/c$
	Track χ^2 /dof	<	5
	Impact-parameter χ^2	>	0
$(\mu^+\mu^-)h^+h^-$ combination	MIN DOCA	<	0.1 mm
	MAX DOCA	<	$0.2\mathrm{mm}$
	$\sum p_T$	>	3 GeV/c
	$\sum \sqrt{\chi^2_{IP}}$	>	12
	PV		all from same
D^0	m	>	$1800 \mathrm{MeV}/c^2$
		<	$1950 \mathrm{MeV}/c^2$
	DIRA	>	0.9999
	Vertex χ^2/dof	<	15
	Impact-parameter χ^2	<	25
	$M_{corrected}$	<	$3500 \mathrm{MeV}/c^2$

Trigger HLT2 selection


Stripping Selection

Particle	Variable	Requirement	
K,π,μ	p	>	3 GeV/c
	p_T	>	300 MeV/c
	Impact-parameter χ^2	>	3
	Track χ^2 /dof	<	3
μ	isMuon		True
K	DLL _K	>	-5
D^0	p	>	3 GeV/c
	p_T	>	2 GeV/c
	m	>	$m_{\rm PDG} - 100 {\rm MeV}/c^2$
		<	$m_{\rm PDG} + 100 {\rm MeV}/c^2$
	Vertex χ^2 /dof	<	20
	Flight-distance χ^2	>	30
	Impact-parameter χ^2	<	36
	Cosine of the direction angle (a.k.a. DIRA)	>	0.9998
	Largest distance of closest approach of daughters (a.k.a. MAXDOCA)	<	0.3 mm
	Impact-parameter χ^2 of at least one of the daughters	>	9
D^*	p_T	>	2 GeV/c
	Vertex χ^2 /dof	<	20
	Distance of closest approach of daughters (a.k.a. DOCA)	<	0.3 mm
	Δm	>	$137.4 \text{MeV}/c^2$
		<	$163.4 \text{ MeV}/c^2$
π_s	p_T	>	120 MeV/c
	Track χ^2 /dof	<	3
	Number of primary vertices	\geq	1

Preselection

particle	Variable	$D^0 \to K^+ K^- \mu^+ \mu^-$	$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$
K, π, μ	TRACKGhostProb	< 0.3	< 0.3
π_s	TRACKGhostProb	< 0.05	< 0.05
μ	MuonNShared	= 0	= 0
π	ProbNNpi		> 0.2
K	ProbNNK	> 0.2	
D^0	$\mathrm{IP}\chi^2$	< 25	< 25
D^{*+}	Δm	$> 144.5 \mathrm{MeV}/c^2$	$> 144.5 \mathrm{MeV}/c^2$
		$< 146.5\mathrm{MeV}/c^2$	$<146.5\mathrm{MeV}/c^2$

Output of the reweighter BDT and the corresponding weight

Sensitivity to asymmetries - $\pi^+\pi^-$ mode

- Simultaneous fit splitting dataset by a random tag,
- Same shapes and selection assumed,
- Asymmetry A as shared parameter.

$$N^{+} = \frac{N_{tot}}{2}(1+A)$$
$$N^{-} = \frac{N_{tot}}{2}(1-A)$$

Channel	$m(\mu^+\mu^-)~{ m MeV}/c^2$		ΔA
$D^0\!\rightarrow\pi^+\pi^-\mu^+\mu^-$	full range		2.5%
	low mass	< 525	20%
	η	525-565	20%
	$ ho/\omega~({ m left})$	565-780	5.1%
	$ ho/\omega~({ m right})$	780-950	7.3%
	$ ho/\omega$ (full)	565 - 950	4.3%
	ϕ (left)	950 - 1020	4.5%
	$\phi~({ m right})$	1020 - 1100	4.0%
	ϕ (full)	950 - 1100	3.1%
	high mass	> 1100	_
$D^0\!\rightarrow K^+K^-\mu^+\mu^-$	full range 7.5		7.5%
	low mass	< 525	18%
	η	525-565	_
	high mass	> 565	8%

Amplitude Analysis feasibility

- 1. Build a model of the full amplitude M_{if} in order to include all the possibile contributions,
- 2. Add contributions, according to their possibility to interfere,
- 3. Fit the model in the 5-dimensional phase-space,
- 4. Determine asymmetries for each component.

 $W_{if} = \frac{2\pi}{\hbar} \left[\frac{M_{if}}{M_{if}} \right]^2 \frac{dN}{dE_{f}}$

Amplitude Analysis feasibility

- Impossible to build the amplitude from first principles.
- Phenomenological approach needed. A decay amplitude for a process $a \rightarrow b c$ can be modelled in the helicity formalism and isobar model as:

- Blatt-Weisskopf form factors
- Breit-Wigner lineshape or its generalizations
- For now we are studying the model only for $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

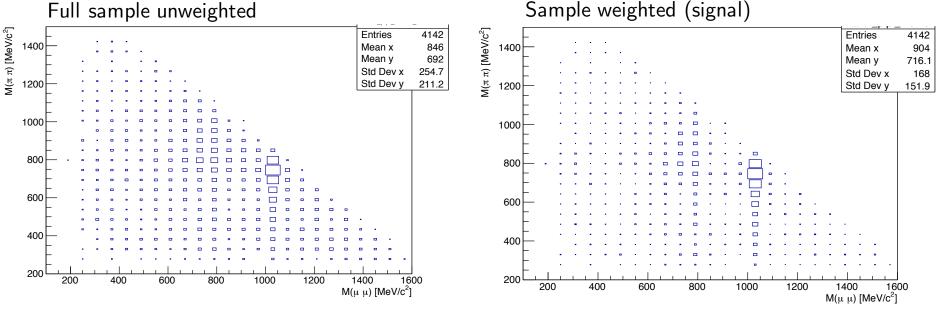
J^P	$\pi\pi$ resonances	$\mu\mu$ resonances
0+	$f_0(980)$, $f_0(500)$, $f_0(1370)$	
0-		η
1-	$ ho(770)$, $\omega(782), ho(1450)$	$ ho(770)$, $\omega(782)$, $\phi(1020)$
2+	$f_2(1270)$	

Amplitude Analysis feasibility

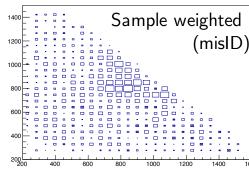
Only some combinations of specific J^P are allowed, due to angular momentum and parity conservation.

For example (only lower J and L):

- $D^0 \rightarrow 0^+ 0^-$ S-wave: $f_0(980)\eta$, $f_0(500)\eta$, $f_0(1370)\eta$
- $D^0 \rightarrow 1^- 0^-$ P-wave: $(\rho \omega) \eta$, $\rho(1450) \eta$
- $D^0 \rightarrow 1^- 1^- \text{P-wave:} (\rho \omega)(\rho \omega), (\rho \omega) \phi$
- For two resonances production (first topology) the single contribution can be written as:

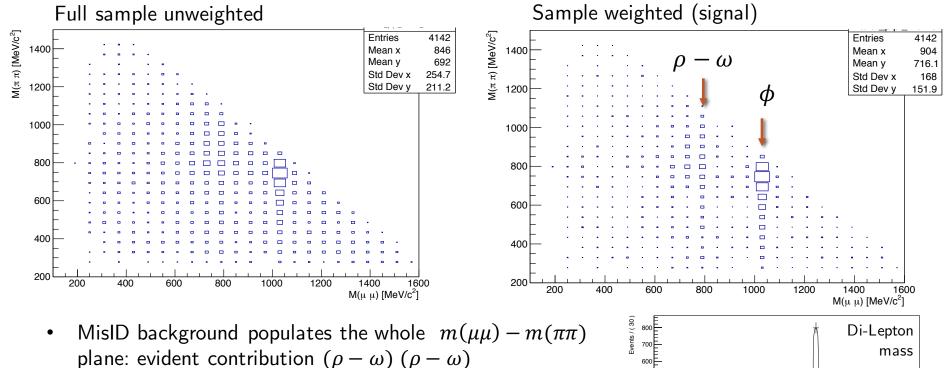

$$A_{\lambda_{\mu^{+}},\lambda_{\mu^{-}}}^{R_{1},R_{2}} = \sqrt{\frac{(2s_{R_{1}}+1)(2s_{R_{2}}+1)}{(4\pi)^{2}}} \sum_{\lambda_{R_{1}}} d_{\lambda_{R_{1}},\lambda_{\mu^{+}}-\lambda_{\mu^{-}}}^{J_{R_{2}}}(\theta_{\mu^{+}}) d_{\lambda_{R_{1}},0}^{J_{R_{1}}}(\theta_{\pi^{+}}) e^{-i\lambda_{R_{1}}\phi} A_{0,0}^{R_{1}} A_{\lambda_{\mu^{+}},\lambda_{\mu^{-}}}^{R_{2}}(\theta_{\mu^{+}}) d_{\lambda_{R_{1}},0}^{J_{R_{1}}}(\theta_{\pi^{+}}) e^{-i\lambda_{R_{1}}\phi} A_{\lambda_{\mu^{+}},\lambda_{\mu^{-}}}^{R_{2}}(\theta_{\mu^{+}}) d_{\lambda_{R_{1}},0}^{J_{R_{1}}}(\theta_{\pi^{+}}) e^{-i\lambda_{R_{1}}\phi} A_{\lambda_{\mu^{+}},\lambda_{\mu^{-}}}^{R_{2}}(\theta_{\mu^{+}}) d_{\lambda_{\mu^{+}},\lambda_{\mu^{-}}}^{R_{2}}(\theta_{\mu^{+}}) d_{\lambda_{\mu^{+}},\lambda_{\mu^{-}}}^{R_{2}}(\theta_{\mu^{+}}) e^{-i\lambda_{\mu^{+}}\phi} A_{\lambda_{\mu^{+}},\lambda_{\mu^{-}}}^{R_{2}}(\theta_{\mu^{+}}) d_{\lambda_{\mu^{+}},\lambda_{\mu^{-}}}^{R_{2}}(\theta_{\mu^{+}}) e^{-i\lambda_{\mu^{+}}\phi} A_{\lambda_{\mu^{+}},\lambda_{\mu^{-}}}^{R_{2}}(\theta_{\mu^{+}}) d_{\lambda_{\mu^{+}},\lambda_{\mu^{-}}}^{R_{2}}(\theta_{\mu^{+}}) e^{-i\lambda_{\mu^{+}}\phi} A_{\lambda_{\mu^{+}},\lambda_{\mu^{+}}}^{R_{2}}(\theta_{\mu^{+}}) e^{-i\lambda_{\mu^{+}}\phi} A_{\lambda_{\mu^{+}},\lambda_{\mu^{+}}}^{R_{2}}(\theta_{\mu^{+}}) e^{-i\lambda_{\mu^{+}}\phi} A_{\lambda_{\mu^{+}},\lambda_{\mu^{+}}}^{R_{2}}(\theta_{\mu^{+}}) e^{-i\lambda_{\mu^{+}}\phi} A_{\lambda_{\mu^{+}}}^{R_{2}}(\theta_{\mu^{+}}) e^{-i\lambda_{\mu^{+}}\phi} A_{\lambda_{\mu^{+}}}^{R_{2}}(\theta_{\mu^{+}}) e^{-i\lambda_{\mu^{+}}\phi} A_{\lambda_{\mu^{+}}}^{R_{2}}(\theta_{\mu^{+}}) e^{-i\lambda_{\mu^{+}}\phi} A_{\lambda_{\mu^{+}}}^{R_{2}}(\theta_{\mu^{+}}) e^{-i\lambda_{\mu^{+}}\phi} A_{\lambda_{\mu^{+}}}^{R_{2}}(\theta_{\mu^{+}}) e^{-i\lambda_{\mu^{+}}\phi} A_{\lambda_{\mu^{+}}}^{R_{2}}(\theta_{\mu^{+}}$$

$$\begin{aligned} \mathbf{0}^{+}\mathbf{0}^{-} &: \quad A_{\lambda_{\mu}+,\lambda_{\mu}-}^{R_{1},R_{2}} = \frac{1}{4\pi} A_{0,0}^{R_{1}} A_{\lambda_{\mu}+,\lambda_{\mu}-}^{R_{2}} \\ \mathbf{1}^{-}\mathbf{0}^{-} &: \quad A_{\lambda_{\mu}+,\lambda_{\mu}-}^{R_{1},R_{2}} = \frac{\sqrt{3}}{4\pi} \sum_{\lambda_{R_{1}}} d_{\lambda_{R_{1}},0}^{1}(\theta_{\pi^{+}}) e^{-i\,\lambda_{R_{1}}\phi} A_{0,0}^{R_{1}} A_{\lambda_{\mu}+,\lambda_{\mu}-}^{R_{2}} \\ \mathbf{1}^{-}\mathbf{1}^{-} &: \quad A_{\lambda_{\mu}+,\lambda_{\mu}-}^{R_{1},R_{2}} = \frac{\sqrt{3}}{4\pi} \sum_{\lambda_{R_{1}}} d_{\lambda_{R_{1}},\Delta\lambda_{\mu}}^{1}(\theta_{\mu^{+}}) d_{\lambda_{R_{1}},0}^{1}(\theta_{\pi^{+}}) e^{-i\,\lambda_{R_{1}}\phi} A_{0,0}^{R_{1}} A_{\lambda_{\mu}+,\lambda_{\mu}-}^{R_{2}} \end{aligned}$$


Most important

Background subtracted distributions

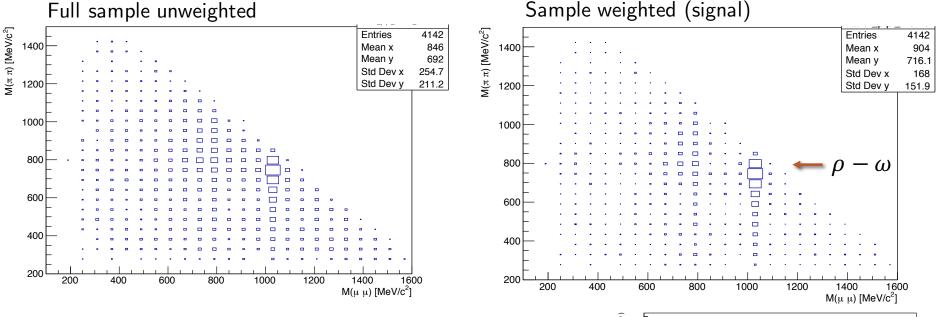
- First look at 2017 data phase-space slice in $\{m(\mu\mu), m(\pi\pi)\}$ plane after sWeights,
- Important note: in this slice the phase-space-only distribution is not flat!

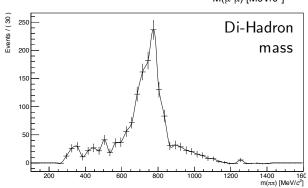


• MisID background populate the whole $m(\mu\mu) - m(\pi\pi)$ plane: evident contribution $(\rho - \omega) (\rho - \omega)$

Background subtracted distributions

- First look at 2017 data phase-space slice in $\{m(\mu\mu), m(\pi\pi)\}$ plane after sWeights,
- Important note: in this slice the phase-space-only distribution is not flat!


• Clear evidence of ϕ and $\rho - \omega$ contributions in $m(\mu\mu)$, as expected


M(μ μ) [MeV/c²]

Background subtracted distributions

- First look at 2017 data phase-space slice in $\{m(\mu\mu), m(\pi\pi)\}$ plane after sWeights,
- Important note: in this slice the phase-space-only distribution is not flat!

- MisID background populates the whole $m(\mu\mu) m(\pi\pi)$ plane: evident contribution $(\rho - \omega) (\rho - \omega)$
- Clear evidence of ϕ and $\rho \omega$ contributions in $m(\mu\mu)$, as expected
- Evidence of $\rho \omega$ contributions in $m(\pi\pi)$, as expected. Interference patterns will be clearer with the full statistics.

