
Ansible & TOSCA
Essentials

Doina Cristina Duma (aiftim<at>infn.it)
Alessandro Costantini (acostantini<at>infn.it)

Big Data Analytics
9-12 Dic. 2019, Bologna

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International license

Outline

• What is, how it works, architecture
• Key components
• Ad-hoc commands
• Roles, their structure
• Ansible-Galaxy & Galaxy, Roles use and re-use
• Playbooks & roles
• Advanced usage (cenni): debug, optimization

D.C. Duma 2

Bit…s of History

• «Ansible»
Ø1966 – Ursula K. Le Guin, «Rocannon’s World»

Ø«answerable»: device that allow its users to receive answers to their messages in a
reasonable amount of time, even over interstellar distances

Ø1977,1985 – Orson Scott Card, «Ender’s Game»
Ø«Philotic Parallax Instantaneous Communicator»: machine capable of communicating

across infinite distances with no time delay
Ø2012 - Michael DeHaan , RH Emerging Technlogies: «work on basically

whatever they thought people needed»
ØCobbler & Func
ØAnsibleWorks, Inc. => Ansible, Inc. => RedHat (2015)
Ø«a simple deployment, model-driven configuration management, and command

execution framework»

D.C. Duma 3

https://enderverse.fandom.com/wiki/Ansible
http://www.coloandcloud.com/editorial/an-interview-with-ansible-author-michael-dehaan/
http://cobbler.github.com/
http://fedorahosted.org/func

What is?

«Ansible is an automation and configuration management technology
used to provision, deploy, and manage compute infrastructure across
cloud, virtual, and physical environments»

ØAutomation language that can describe an IT application
infrastructure, in Ansible Playbooks => YAML

ØAutomation Engine that runs Ansible Playbooks

D.C. Duma 4

https://yaml.org/

(YAML = YAML Ain't Markup Language)

- Human friendly (readble) data-serialization standard for all programming languages
- Can be used with nearly any application that needs to store or transmit data
- Flexible = bits and pieces from other languages:

- Scalars, lists, associative arays <- Perl
- Document separator, «—» <- MIME
- Whitespace wrapping <- HTML
- Escape sequences <- C
- uses both Python-style indentation to indicate nesting
- Superset of JSON - uses [] for lists and {} for maps

D.C. Duma 5

Ansible is …

D.C. Duma 6

• Simple
ØHuman readable automation
ØNo special coding skills needed
ØTasks executed in order
ØGet productive quickly

• Powerful
ØApplication deployment
ØConfiguration management
ØWorkflow orchestration
ØOrchestrate the application lifecycle

• Cross-platform
ØAgentless support for all major OS,

physical, virtual, cloud and network

• Works with existing toolkits
Ø Homogenize existing env. by leveraging

current toolsets and update
mechanisms

• «Batteries Included»
Ø Comes bundled with > 450 modules

• Community powered
Ø the most popular open source

automation tool on GitHub
▪ Downloads ~250k/month
▪ People – 3500 people contributing

modules, 1200 users on IRC

- Cloud
- Containers
- Databases
- Files
- Messaging

- Monitoring
- Network
- Notifications
- Packaging
- Source Control

- System
- Testing
- Utilities
- Web

Infrastructure

Use cases

D.C. Duma 7

Ansible concepts

• Control Node
Ø Any machine with Ansible installed

• Managed Nodes = hosts
Ø Servers one manages with Ansible
Ø No Ansible installed

• Inventory = hostfile
Ø List of managed hosts
Ø Groups – hosts with common features (web

server, rack)
• Modules

Ø units of code Ansible executes
• Tasks

Ø units of action in Ansible
• Playbook

Ø Ordered lists of tasks, and variables
Ø Written in YAML

D.C. Duma 8

• Playbook is a YAML file which consists in
a list of Plays.
Ø A Play in a playbook is a list of Tasks.

Ø A Task in a play contains Modules
and its arguments.
Ø Modules are the ones that

do the actual work.

Ansible Architecture

D.C. Duma 9

Installation

• Version:
Ølatest

• Requirements:
ØControl Node

• Python 2 (v. 2.7) or Python 3 (v. 3.5 and higher)
• Red Hat, Debian, CentOS, macOS, any of the BSDs, etc

v No Windows
• Nearness/closeness

• Managed Nodes
• Python 2 (v. 2.7) or Python 3 (v. 3.5 and higher)
• a way to communicate => ssh

D.C. Duma 10

Installation (2)

D.C. Duma 11

Version, config files

D.C. Duma 12

Config files

• $ANSIBLE_CONFIG
• {$PWD}/ansible.cfg
• ~/.ansible.cfg
• /etc/ansible/ansible.cfg

$ ansible-config list

D.C. Duma 13

CLI

• ansible - Define and run a single task ‘playbook’ against a set of hosts
• ansible-config - View ansible configuration
• ansible-console - REPL console for executing Ansible tasks
• ansible-doc - Plugin documentation tool
• ansible-galaxy - Perform various Role and Collection related operations
• ansible-inventory - Display or dump the configured inventory as Ansible sees it
• ansible-playbook-Runs Ansible playbooks, executing the defined tasks on the

targeted hosts.
• ansible-pull - pulls playbooks from a VCS repo and executes them for the local

host
• ansible-vault - encryption/decryption utility for Ansible data files

D.C. Duma 14

https://docs.ansible.com/ansible/latest/cli/ansible.html
https://docs.ansible.com/ansible/latest/cli/ansible-config.html
https://docs.ansible.com/ansible/latest/cli/ansible-console.html
https://docs.ansible.com/ansible/latest/cli/ansible-doc.html
https://docs.ansible.com/ansible/latest/cli/ansible-galaxy.html
https://docs.ansible.com/ansible/latest/cli/ansible-inventory.html
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://docs.ansible.com/ansible/latest/cli/ansible-pull.html
https://docs.ansible.com/ansible/latest/cli/ansible-vault.html

Inventory: formats, hosts, groups

D.C. Duma 15

• Formats:
ØINI
ØYAML

• Hosts
ØRemote nodes managed by Ansible
ØCan have individual variables (host name, service

port number, etc, see ex…)
ØRanges:

• www[01:50].example.com
• db-[a:f].example.com

ØVars:
[group1]
host1 http_port=80
maxRequestsPerChild=808
host2 http_port=303
maxRequestsPerChild=909

• Groups
Ø Used to clasify hosts, hosts in

multiple groups
▪ what hosts you are controlling

at what times and for what
purpose.

Ø Default groups:
▪ «all», «ungrouped»

Inventory: formats, hosts, groups, vars

D.C. Duma 16

• Vars:
• Host vars
• Group vars

• Assigning a variable to many machines
• Ansible flattens vars at level of host

Ø internal rules for merging => order/precedence:
Ø all group
Ø parent group
Ø child group
Ø Host

Ø When multiple inventory are used => their order is important

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

Modules & Run Commands

D.C. Duma 17

• Modules = units of code executed by Ansible
= «Ansible toolbox»

• Written in Python
• Extensive library:

• Web module index
• # ansible-doc –l

• (run)-commands => Ad-hoc commands
• command

• Exec commands on targets
• shell

• Exec shell commands on targets
• script

• Runs a local script on a remote node after transferring it
• raw

• Exec a command without going throughthe Ansible module
subsystem

https://docs.ansible.com/ansible/latest/modules/modules_by_category.html

Ad-hoc Commands & Discovered Facts

D.C. Duma 18

Ad-hoc Commands & Discovered Facts (2)

D.C. Duma 19

Ad-hoc Commands & Discovered Facts (3)

D.C. Duma 20

Playbooks, plays, tasks

D.C. Duma 21

• Task
• Application of a single module on one or more

hosts
• Each task ends in a well-defined state

• Play
• A set of ordered tasks, associated with a group of

hosts

• Playbook
• Associate the hosts with the desired state of the

infrastructure, defining the set of tasks to be
performed

• They therefore allow orchestration and
deployment

• Collection of plays

Creating Reusable Playbooks - Roles

• Roles
• decompose complex jobs into smaller pieces

• organizing multiple, related Tasks and encapsulating data needed to accomplish those
Tasks

• Variables, handlers, modules, plugins
• special kind of Playbooks, fully self-contained, with tasks, variables,

configuration templates, other supporting files
• cannot be executed

• provide a skeleton for an independent and reusable collection of variables,
tasks, templates, files, and modules which can be automatically loaded into
the playbook.
• Playbooks are a collection of roles
• Every role has specific functionality

D.C. Duma 22

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

Roles vs. Playbooks

• Each role is typically limited to a particular theme or desired end
result, with all the necessary steps to reach that result either within
the role itself or in other roles listed as dependencies.
• Roles themselves are not playbooks. There is no way to directly

execute a role.
• Roles have no setting for which host the role will apply to.
• Top-level playbooks are the glue that binds the hosts from your

inventory to roles that should be applied to those hosts

D.C. Duma 23

Roles - Location

D.C. Duma 24

• Location:
ØSearch path

• A roles/ directory, relative to the playbook file.
• By default, in /etc/ansible/roles

ØDefined in the configuration, can be customized

ØBest-practice => define it (ansible.cfg) in a «project» related directory

Roles - Directory Structure

D.C. Duma 25

• Expect files to be in certain directory names
ØAt least one of the listed directories
ØWhen exists – mut contain «main.yml»

• Content:
Øtasks - main list of tasks to be executed by the role.
Øhandlers - handlers, which may be used by this role or even

anywhere outside this role.
Ødefaults - default variables for the role (see Using Variables for

more information).
Øvars - other variables for the role
Øfiles - contains files which can be deployed via this role
Øtemplates - templates which can be deployed
Ømeta - defines some meta data for this role.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

Roles – how to use

D.C. Duma 26

• Classic/original - via the roles: option for a given play

• Order to add in the play/playbook:
• roles/x/tasks/main.yml
• roles/x/handlers/main.yml
• roles/x/vars/main.yml
• roles/x/meta/main.yml
• Any copy, script, template can reference files in roles/x/{files,templates,tasks}/

• Order of execution of the playbook
ØEach role listed in roles

Ø Any role dependencies defined in the meta/main.yml
ØAny tasks defined in the play.
ØAny handlers triggered so far will be run.

From monolithic playbook to roles

D.C. Duma 27

Extracting Tasks

D.C. Duma 28

Extracting handler

D.C. Duma 29

Variables

D.C. Duma 30

• two types of variables that can be defined in a role:
• role variables, loaded from roles/<role_name>/vars/main.yaml

• used for example for system-specific constants that don't change much
• role defaults, which are loaded from roles/<role_name>/defaults/main.yaml

• place holders for actual data, a reference of what variables a developer may be interested in
defining with site-specific values

• Main difference – precedence order
• Defaults - are the lowest order variables

Variables in roles - examples

D.C. Duma 31

Moving config files

D.C. Duma 32

Using the New playbook that uses the New role

D.C. Duma 33

Check

Reference: https://docs.ansible.com/ansible-lint/rules/default_rules.html

Check

PLAY

https://docs.ansible.com/ansible-lint/rules/default_rules.html

D.C. Duma 34

Using the New playbook that uses the New role

PLAY

Ansible Galaxy – Reusing Roles

D.C. Duma 35

• Ansible Galaxy – Reusing Roles

ansible-galaxy CLI tool

D.C. Duma 36

Search Roles

D.C. Duma 37

Get Info

D.C. Duma 38

Get Info (2)

D.C. Duma 39

One more!!

D.C. Duma 40

Download and Install – from Galaxy

D.C. Duma 41

ansible-galaxy install role_name(s)[,version]

Where:

Do:

Check:

Download and Install – from Github

D.C. Duma 42

ansible-galaxy install scm+role_repo_url[,version]

Creating roles with ansible-galaxy

D.C. Duma 43

• ansible-galaxy tool can also be used to generate scaffolding, an
initial set of files and directories involved in a role:

[ansible_project]# ansible-galaxy init apache_new
- apache_new was created successfully

[ansible_project]# ansible-galaxy list
- ansible-elasticsearch, 7.4.1
- apache_new, (unknown version)

[ansible_project]# ansible-galaxy init --init-path=INIT_PATH
apache_new

Importing roles – using CLI & WebUI

Importing roles – using CLI & WebUI

D.C. Duma 44

• CLI
• GitHub repository for new role
• login to Ansible Galaxy
• ansible import

ansible-galaxy import -h

Usage: ansible-galaxy import [options] github_user github_repo

Options:

--branch=REFERENCE The name of a branch to import. Defaults to the epository's default
branch (usually master)

-h, --help show this help message and exit

-c, --ignore-certs Ignore SSL certificate validation errors.

--no-wait Don't wait for import results.

--role-name=ROLE_NAME

The name the role should have, if different than the

repo name

-s API_SERVER, --server=API_SERVER

The API server destination

--status Check the status of the most recent import request for

given github_user/github_repo.

-v, --verbose verbose mode (-vvv for more, -vvvv to enable

connection debugging)

--version show program's version number and exit

Import using Ansible Galaxy Web GUI

D.C. Duma 45

Ansible – advanced usage

D.C. Duma 46

• Debbuging
• Optmization

Verbose & debug

D.C. Duma 47

• Verbose flag: -vvv or –verbose
• prints all the values that were returned by each module after it runs
ansible-playbook --verbose playbook.yml

• debug module - prints statements during execution and can be useful for
debugging variables or expressions without necessarily halting the playbook.
Useful for debugging together with the 'when:' directive.

- debug: var=myvariable
- debug: msg="The value of myvariable is {{ var }}"
- debug:

msg: "System {{ inventory_hostname }} has gateway {{
ansible_default_ipv4.gateway }}"
when: ansible_default_ipv4.gateway is defined

assert & pause

D.C. Duma 48

• Assert module - module asserts that given expressions are true
- assert: { that: "ansible_os_family != 'RedHat’» }

• Pause module - pauses playbook execution for a set amount of time,
or until a prompt is acknowledged
• default behavior is to pause with a prompt

Pause for 5 minutes to build app cache.
- pause:

minutes: 5

syntax check & list tasks

D.C. Duma 49

• «--syntax-check» perform a syntax check on the playbook, but do not execute it

• «--list-tasks» list all tasks that would be executed

Optimization (1)

D.C. Duma 50

• SSH multiplexing & ControlPersist
• When Ansible runs a playbook, it will make many SSH connections, in order to do

things such as copy over files and run commands.
• Each time Ansible makes a new SSH connection to a host, it has to pay the

negotiation penalty.
• OpenSSH supports an optimization called SSH multiplexing, which is also referred to

as ControlPersist:
Ø a master connection is opened for each host and a control socket is used to communicate

with the remote host instead of making a new TCP connection

ØIn Ansible:

ControlMaster default=auto
ControlPath default=$HOME/.ansible/cp/ansible-ss-%h-%p-%r
ControlPersist 60s

Optimization (2)

D.C. Duma 51

• Pipelining
• When Ansible executes a task

• It generates a Python script based on the module being invoked
• Then it copies the Python script to the host
• Finally, it executes the Python script

• Enabling pipelining reduces the number of SSH operations required to
execute a module on the remote server
• by executing many ansible modules without actual file transfer.
• this can result in a very significant performance improvement when enabled
• however when using “sudo:” operations you must first disable ‘requiretty’ in

/etc/sudoers on all managed hosts.

Optimization (3)

D.C. Duma 52

• Facts caching
• When a fact cache is enabled and there is valid data for a host, Ansible will

use that rather than running an implicit setup job on a remote host.
• Plugins => # ansible-doc -t cache -l

• jsonfile JSON formatted files.
• memcached Use memcached DB for cache
• memory RAM backed, non persistent
• mongodb Use MongoDB for caching

• pickle Pickle formatted files.
• redis Use Redis DB for cache
• yaml YAML formatted files.

- [defaults]
- gathering = smart fact
- _caching_timeout = 86400

fact_caching =

Example – using elastic.elasticsearch module

D.C. Duma 53

• Connect to your VM & become root
ssh -i ~/<path>/devopskeyXX -l centos devopsXX.cloud.cnaf.infn.it

• Get project from baltig
git clone
https://baltig.infn.it/corsi_formazione_ccr/corso_bd_2019.git

• Update files to meet your environment – ansible.cfg, hosts…
• Install elasticsearch role

ansible-galaxy install elastic.elasticsearch,7.4.1

• Check ….
• Run

ansible-playbook -i hosts es.yaml

https://baltig.infn.it/corsi_formazione_ccr/corso_bd_2019.git

D.C. Duma 54

D.C. Duma 55

D.C. Duma 56

Ansible – Use Cases

• Ansible and HEAT

• Ansible and TOSCA

• Ansible and Docker

D.C. Duma 57

HEAT & HOT templates

D.C. Duma 58

Software configuration

• There are two main ways for running SW configuration scripts in VMs:

• User-data + cloudinit

• Run once after instance first boot

• Software Deployment resources

• Run on every stack create/update

• Send a signal back to Heat when finished

• You can define dependencies among different scripts

• Requires special services (hooks) running in the V

D.C. Duma 59

Example

D.C. Duma 60

INDIGO Mesos templates
• https://github.com/indigo-dc/mesos-cluster/tree/master/deploy/openstack-heat

D.C. Duma 61

https://github.com/indigo-dc/mesos-cluster/tree/master/deploy/openstack-heat

TOSCA – Infrastructure as Code

D.C. Duma 62

Tosca types

• Normative types
• Custom types

• NDIGO custom types:
• https://github.com/indigo-dc/tosca-types/blob/master/custom_types.yaml new types

have been defined for elastic clusters, Marathon applications, Chronos jobs, etc

The artifacts are ansible playbooks that use indigo-dc ansible roles

D.C. Duma 63

https://github.com/indigo-dc/tosca-types/blob/master/custom_types.yaml

Ansible & Docker

• Running ansible playbooks in the Dockerfile:

The same ansible recipes can be used for configuring bare-metal, cloud
servers and containers

D.C. Duma 64

Managing Docker containers with Ansible

D.C. Duma 65

TOSCA Orchestration
essentials

(many of the slides – courtesy of Marica Antonacci)

Outline

• What is TOSCA
• Goals, topology, composition, portability, lifecycle

• INDIGO PaaS Orchestrator
• Hands-on

D.C. Duma 67

TOSCA

• Topology and Orchestration Specification for Cloud Applications
Standardizes the language to describe
• The structure of an ITService (its topology model)
• How to orchestrate operational behavior (plans such as build, deploy, patch,

shutdown, etc.)
• Leveraging the BPMN standard

• Declarative model that spans applications, virtual and physical infrastructure
• Main Goals

• Automated Application Deployment and Management
• Portability of Application Descriptions and their Management
• Interoperability and Reusability of Components

D.C. Duma 68

TOSCA in a nutshell

69

Vision

70

TOSCA Topology

D.C. Duma 71

Topology (2)

D.C. Duma 72

Composition

D.C. Duma 73

Composition (2)

D.C. Duma 74

Portability

D.C. Duma 75

Portability (2)

D.C. Duma 76

Lifecycle – State based Orchestration

D.C. Duma 77

Lifecycle (2)

D.C. Duma 78

Policy - Operational Policies

D.C. Duma 79

TOSCA Eco-System

D.C. Duma 80Ref: https://wiki.oasis-open.org/tosca/TOSCA-implementations

https://wiki.oasis-open.org/tosca/TOSCA-implementations

TOSCA – Openstack Integration

D.C. Duma 81

HEAT vs TOSCA

Davide Salomoni 82

Comparing TOSCA & HEAT

83

TOSCA topology

• Components in the topology are called Nodes
• Each Node has a Type (e.g. Host, DB, Web server).

• The Type is abstract and hence portable
• The Type defines Properties and Interfaces

• An Interface is a set of hooks (named Operations)
• Nodes are connected to one another using Relationships
• Both Node Types and Relationship Types can be derived

84

Normative Types

• The TOSCA Simple Profile in YAML specifies a rendering of TOSCA to
provide a more accessible syntax and a more concise expressiveness
of the TOSCA DSL
• It provides a rich set of base types (node types and relationship

types): e.g. ‘Compute’ node type
• Some non-normative types are provided as well but implementations

of this specification are not required to support these types for
conformance.

D.C. Duma 85

Custom Types

• TOSCA is highly versatile
Ø One can define custom types for nodes,

relationships, and capabilities —> can be used
in different domains

ØIndigo custom types
Øhttps://github.com/indigo-dc/tosca-types

D.C. Duma 86

https://github.com/indigo-dc/tosca-types

INDIGO-DC custom type example

D.C. Duma 87

Topology Template Example 1

D.C. Duma 88

Topology Template Example 2

D.C. Duma 89

Simplified Topology Template Structure

D.C. Duma 90

Node template

• A Node template is an instance of a specified Node
Type and can provide customized properties,
constraints or operations which override the defaults
provided by its Node Type and its implementations

• An instance of a type (like Object to Class)
ØHas specific properties
ØHas artifacts:

• What to install
• How to install (mapped to interface hooks)

ØHas requirements and capabilities (or relationships)

D.C. Duma 91

Node Type

• Describes a Cloud or Software type (e.g. Server or Apache)

D.C. Duma 92

Relationship Type

• The basic relationship types are:
• dependsOn – abstract type and its sub types:
• hostedOn – a node is contained within another
• connectsTo – a node has a connection configured to another

D.C. Duma 93

INDIGO PaaS Orchestration

• The PaaS Orchestrator is based on the developments carried out during
the INDIGO-DataCloud project
• advanced features and important enhancements are being implemented in the

framework of three projects: DEEP-Hybrid DataCloud, eXtreme-DataCloud and
EOSC-Hub

• It allows to coordinate the provisioning of virtualized compute and storage
resources on different Cloud Management Frameworks (like OpenStack,
OpenNebula, AWS, etc.) and the deployment of dockerized services and
jobs on Mesos clusters.
• The PaaS orchestrator features advanced federation and scheduling

capabilities ensuring the transparent access to heterogeneous cloud
environments and the selection of the best resource providers based on
criteria like user’s SLAs, services availability and data location

D.C. Duma 94

https://www.indigo-datacloud.eu/
https://deep-hybrid-datacloud.eu/
http://www.extreme-datacloud.eu/
https://www.eosc-hub.eu/

INDIGO Platform as a Service

D.C. Duma 95

The deployment workflow

• The Orchestrator receives the deployment request (TOSCA template)
• The Orchestrator collects all the information needed to deploy the virtual

infra/service/job consuming others PaaS μServices APIs:
• SLAM Service: get the prioritized list of SLAs per user/group;
• Configuration Management DB: get the the capabilities of the underlying IaaS

platforms;
• Data Management Service: get the status of the data files and storage resources

needed by the service/application
• Monitoring Service: get the IaaS services availability and their metrics;
• CloudProviderRanker Service (Rule Engine): sort the list of sites on the basis of

configurable rules
• The orchestrator delegates the deployment to IM, Mesos or QCG-

Computing based on the TOSCA template and the list of sites.
• Cross-site deployments are also possible.

D.C. Duma 96

PaaS Orchestrator architecture

D.C. Duma 97

Infrastructure Manager Architecture

D.C. Duma 98

Deployment retry strategy

• The Orchestrator implements a
trial-and-error mechanism that
allows to re-schedule the
deployment on the next available
cloud provider from the list of
candidate sites.
• Example:

• deployment fails because of
exceeding the quota on the chosen
site

D.C. Duma 99

GPU scheduling and HPC integration

• The PaaS Orchestrator supports the deployment of virtual machines
and containers that need to access specialised hardware devices,
namely GPUs, to provide the processing power required by tasks like
Machine Learning algorithms
• the GPU requirements (num, vendor, model) can be specified in the TOSCA

template
• the Orchestrator automatically selects the sites/services that provide the

needed capabilities (flavors, gpu support)
• The Orchestrator includes a plugin for submitting jobs to HPC

facilities
• exploits the QCG-Computing service (PSNC) that exposes REST APIs to submit

jobs to the underlying batch systems

D.C. Duma 100

Support for hybrid deployments of
elastic clusters

• Scenario I:
• exploits L2 network provided

by the site

• Scenario II:
• dedicated private nets are

automatically provisioned

D.C. Duma 101

Further features and enhancements

• The Paas Orchestrator has been
enhanced to schedule the
processing jobs near the data
• The PaaS orchestrator is been

extended in order to:
• Integrate a data management policy

engine (QoS and Data Life Cycle)
• Move data between distributed storages
• Specify different QoSfor replicas
• Support workflows for data pre-

processing and ingestion

D.C. Duma 102

Orchestrator REST APIs

• Create a deployment:
• POST request to /deployments - parameters:

• template: string containing a TOSCA YAML-formatted template
• parameters: the input parameters of the deployment (map of strings

• Get deployment details
• GET request to /deployments:

curl 'http://localhost:8080/deployments/<uuid>'
• Delete deployment

• DELETE request
curl ‘http://localhost:8080/deployments/<uuid>'

• Documentation:
• http://indigo-dc.github.io/orchestrator/restdocs/#overview

D.C. Duma 103

http://indigo-dc.github.io/orchestrator/restdocs/

Orchent: the Orchestrator CLI

D.C. Duma 104

Orchestrator dashboard

D.C. Duma 105

Authentication via INDIGO IAM

List own deployments

D.C. Duma 106

Get deployments details and outputs

D.C. Duma 107

INDIGO Resources

• https://github.com/indigo-dc/tosca-templates
• https://github.com/indigo-dc/tosca-types

• https://galaxy.ansible.com/indigo-dc/

• https://hub.docker.com/u/indigodatacloud/dashboard/

D.C. Duma 108

https://github.com/indigo-dc/tosca-templates
https://github.com/indigo-dc/tosca-types
https://galaxy.ansible.com/indigo-dc/
https://hub.docker.com/u/indigodatacloud/dashboard/

References

• TOSCA Simple Profile in YAML Version 1
• http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-

YAML/v1.0/csprd02/TOSCA-Simple-Profile-YAML-v1.0-csprd02.html

• Cloud Portability, Lifecycle Management and more
https://www.slideshare.net/CloudStandardsCustomerCouncil/oasis-
tosca-cloud-portability-and-lifecycle-management
• TOSCA presentation

• https://www.slideshare.net/CloudStandardsCustomerCouncil/oasis-tosca-
cloud-portability-and-lifecycle-management

D.C. Duma 109

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd02/TOSCA-Simple-Profile-YAML-v1.0-csprd02.html
https://www.slideshare.net/CloudStandardsCustomerCouncil/oasis-tosca-cloud-portability-and-lifecycle-management
https://www.slideshare.net/CloudStandardsCustomerCouncil/oasis-tosca-cloud-portability-and-lifecycle-management

Hands-on Outline

• Goal: submit some simple TOSCA template through the PaaS
Orchestrator

1. Deploy a VM
2. Deploy a JupytherHub on top of a Kubernetes cluster

https://baltig.infn.it/corsi_formazione_ccr/corso_bd_2019/tree/master
/ansible_tosca/tosca

D.C. Duma 110

https://baltig.infn.it/corsi_formazione_ccr/corso_bd_2019/tree/master/ansible_tosca/tosca

