
Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Hands-on session:
set up a big data architecture

Fabio Viola

For your convenience:

https://baltig.infn.it/fviola/corsoccr---hands-on-big-data

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

1 Aim of this session
Pre-requisites

2 Apache Flume
Introduction
Installation
Running Flume
Resources

3 Apache Kafka
Introduction
Installation
Execution
Attaching Kafka to Flume

Retention
4 Apache Spark

Introduction
Installation
Execution

5 InfluxDB
Introduction

6 Installation
7 Execution
8 Grafana

Introduction
Installation
Configuration

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Aim of this session

Create an infrastructure to process local log files with Apache’s Big Data tools.

More in particular:

Flume will read data from syslog;

Kafka will dispatch Flume’s output;

Spark will be used to perform basic analysis; tasks;

InfluxDB to write results of real-time analyses (hands-off);

Grafana will be used to plot data (hands-off).

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Pre-requisites

Pre-requisites

In this session I’ll often refer to tmux. This tool is essential for mainly two
reasons:

allows switching among multiple remote terminals keeping just an ssh
session opened.

keeping alive (and re-attach to) running processes even after shutting
down an ssh session (. . . also useful in case of network failures).

Let’s install tmux with:

$ sudo yum install tmux

So, right after your first ssh connection open tmux with:

$ tmux

The next slide will provide an insight on the main shortcuts.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Pre-requisites

Tmux essentials

tmux provides a wide set of commands. We will focus on a few of them, just to
perform the basic tasks. Inside a tmux session, remember these three shortcuts:

Ctrl-b s List of active tmux sessions
Ctrl-b :new Create a new tmux session
Ctrl-b $ Rename the current session

Outside a tmux session, to open the tool and connect to an existing session we
just need:

$ tmux attach

This will attach to the last active session, and we would then be able to switch
using Ctrl-b s.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Pre-requisites

Tmux in short. . .

Using tmux is like making Alt-tab among your windows. . . but among your
terminal sessions!

Source: https://i.stack.imgur.com

https://i.stack.imgur.com

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Pre-requisites

Text editor

You will absolutely need a text editor. In this presentation I will refer to GNU
Emacs, but other choices are available on your system (i.e. vi. . .) or can be
installed with yum.

To get started with Emacs, just remember these easy shortcuts:

Ctrl-x Ctrl-f to open a file
Ctrl-x Ctrl-s to save a file
Ctrl-x Ctrl-c to quit
Ctrl- to undo a change
Shift-INS to paste from the clipboard

Disclaimer: vi users will not be harmed during this tutorial.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Introduction

Apache Flume

What is it?

Apache Flume is a data ingestion tool designed to efficiently handle large
amounts of data coming from heterogeneous sources and flowing to
heterogeneous recipients.

More in particular, Flume is able to retrieve (and write) data from (to): Avro,
Thrift, Exec, JMS, Spool directories, Taildir, Twitter, Kafka, Netcat, and many
other.... . .

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Introduction

Flume in short. . .

Source: http://kdam.iltrovatore.it/.jpg

http://kdam.iltrovatore.it/.jpg

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Introduction

Flume’s model

Flume’s model is based on three main components, as shown below:

Basically, every Flume application consists of a configuration file containing
settings for the sources, channels and sinks.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

Installation

1 Create a new tmux session for flume

2 Download

$ wget www.apache.org /.../ apache -flume -VERSION -bin.tar.gz

3 Uncompress

$ tar xvzf apache -flume -VERSION -bin.tar.gz

Click here for current version.

http://www.apache.org/dyn/closer.lua/flume/1.9.0/apache-flume-1.9.0-bin.tar.gz

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Running Flume

Running Flume – 1

Before running Flume, we of course need to create a configuration file for it.
For sure we will need at least a source, a channel and a sink:

a1.sources = r1
a1.channels = c1
a1.sinks = s1

a1 is an identifier for referring to our application.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Running Flume

Running Flume – 2

Let’s suppose that we want to read log data produced by our GNU/Linux
machine and simply output it on screen. . .

The source is a given log files (e.g. /var/log/syslog). In a bash shell we
could simply use tail -F. . . So we can select exec as a source type and
specify this command:

a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /var/log/messages
a1.sources.r1.channels = c1

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Running Flume

Running Flume – 3

Now we configure our channel:

a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

Then the sink:

a1.sinks.s1.type = logger
a1.sinks.s1.channel = c1

Save this file with a custom name (e.g. flume1.conf).

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Running Flume

Running Flume – 4

We are ready to start flume:

$ bin/flume -ng agent --conf conf --conf -file flume1.conf \
--name a1 -Dflume.root.logger=INFO ,console

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Running Flume

Running Flume – 5

If the amount of generated log is too little, you can try with a log generator:

$ git clone https :// baltig.infn.it/rossitisbeni/LogSimulator.git

And clone a repository with a set of log files:

$ git clone https :// github.com/logpai/loghub

Then, from the log simulator folder, execute the code:

$ python logsimulator.py

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Running Flume

Running Flume – 6

Our first example is complete! Simple, isn’t it? Now you can play with Flume
using the sources and sinks you may need.

Supported sources are:

Avro, Thrift, Exec, JMS, Spool directories, Taildir, Twitter, Kafka, Netcat
. . .

Supported sinks are:

HDFS, Hive, Logger, Avro, Thrift, IRC, FileRoll, Null, HBaseSink,
ElasticSearch . . .

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Resources

Resources

Homepage: https://flume.apache.org/

Flume user guide: https:

//flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html

https://flume.apache.org/
https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html
https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Introduction

Introduction

Kafka is a topic-based publish-subscribe engine that is used as a broadcaster for
the information in our system.

Rather than simply reading data from Flume, we prefer using Kafka in order to
permit multiple clients at once.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Introduction

Kafka in short. . .

Source: https://y.yarn.co

https://y.yarn.co

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

Installation

Create a new tmux session for kafka

Download and uncompress Kafka

$ wget http ://www.apache.org /.../ kafka_VERSION.tgz
$ tar xzvf kafka_VERSION.tgz
$ ln -s kafka_VERSION kafka

Click here for current version.

https://www.apache.org/dyn/closer.cgi?path=/kafka/2.3.1/kafka_2.12-2.3.1.tgz

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Execution

Running Kafka

Kafka requires zookeeper to be running, since it keeps track of status of the
Kafka cluster nodes and it also keeps track of Kafka topics, partitions etc1. So
let’s start zookeeper first and then focus on Kafka:

Create a new tmux session for zookeeper

Start zookeeper

$ cd kafka/bin
$ sh zookeeper -server -start.sh ../ config/zookeeper.prop..

Switch back to kafka session and start kafka

$ cd kafka/bin
$ sh kafka -server -start.sh ../ config/server.properties

Then, Zookeeper and Kafka will respectively be listening on ports 2181 and
9092.

1www.cloudkarafka.com/blog/2018-07-04-cloudkarafka_what_is_zookeeper.html

www.cloudkarafka.com/blog/2018-07-04-cloudkarafka_what_is_zookeeper.html

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Execution

Creating a topic

To start publishing and subscribing to kafka, we first need to create one or
more topics:

Start a new tmux session

Create a new topic

$ cd kafka/bin
$ sh kafka -topics.sh --create --bootstrap -server \
> localhost :9092 --replication -factor 1 --partitions 1 \
> --topic MyBigData

Now, we are ready to start publishing and subscribing. As a first step, we’ll rely
on the utilities provided with the Kafka package.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Execution

Subscribing to a topic

A subscription to the topic MyBigData can be performed with a very simple
tool available in the bin folder of Apache’s package:

Open a new tmux session (e.g. named ”kafka-consumer”)

Subscribe to the topic

$ cd kafka/bin
$ kafka -console -consumer.sh --bootstrap -server \
> localhost :9092 --topic MyBigData --from -beginning

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Execution

Publishing on a given topic

Now let’s publish some messages with the topic MyBigData using a very simple
tool available in the bin folder of Apache’s package:

Open a new tmux session (e.g. named ”kafka-producer”)

Publish a simple hello world message

$ cd kafka/bin
$ kafka -console -producer.sh --broker -list \
> localhost :9092 --topic MyBigData
Hello World

Now switch back to session ”kafka-consumer” and see the magic. . .

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Attaching Kafka to Flume

Editing Flume configuration

Until now, we have been working with Kafka by manually producing its input.
It’s time to connect Flume to Kafka. . .
To do this, open Flume configuration file and edit the sink to look like this:

a1.sinks.s1.type = kafka
a1.sinks.s1.channel = c1
a1.sinks.s1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.s1.kafka.topic = MyBigData
a1.sinks.s1.kafka.bootstrap.servers = localhost :9092
a1.sinks.s1.kafka.flumeBatchSize = 20
a1.sinks.s1.kafka.producer.acks = 1
a1.sinks.s1.kafka.producer.linger.ms = 1
a1.sinks.s1.kafka.producer.compression.type = snappy

Then, restart Flume, and switch to your kafka consumer to see log lines
dispatched by kafka.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Retention

Retention

Apache Kafka provides two types of Retention Policies:

Time-based retention: defaults to 7 days. When the time limit is hit, the
segment is marked for deletion or compaction depending on configured
cleanup policy.

Size-based retention: obviously we set the maximum size for a segment.
This policy is not popular as this does not provide good visibility about
message expiry, but it is useful in a scenarios with a limited disk space.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Retention

Retention

Retention can be set in the configuration file with one of the following lines
(reported in decreasing order of priority):

log.retention.ms =1680000
log.retention.minutes =1680
log.retention.hours =168

or selectively by altering a topic:

$ bin/kafka -topics.sh --zookeeper localhost :2181 \
> --alter --topic MyBigData --config retention.ms=1000

(where we can specify the time in ms, minutes and hours).

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Retention

Cleanup policies

In Kafka, messages are not immediately removed after they are consumed.
Instead, the configuration of each topic determines how much space the topic
is permitted and how it is managed. Cleanup configuration is per topic.
Possible policies are:

Delete: the default policy that deletes segments exceeding the maximum
time or size.

Compact: this is used to perform Compaction on a topic. Compaction
removes records of each partition where there are more recent updates
with the same primary key.

Delete and compact: combination of the two previous modes.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Retention

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Introduction

What is Spark?

Apache Spark is a distributed general-purpose cluster-computing framework,
providing an interface for parallel programming.

Spark pivots on the concept of RDD (Resilient Distributed Dataset) to deal
with data. RDDs are multisets of data item that can be processed in a very
efficient way. . .

Among the many libraries provided by Spark, an interesting one is MLlib
dedicated to machine learning.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Introduction

Spark in short. . .

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

Installation

Create a new tmux session

Download and uncompress Spark

$ wget http ://www.apache.org /.../ spark -VERSION.tgz
$ tar zvxf spark -VERSION.tgz
$ ln -s spark -VERSION spark

Modify our /.profile to add the following lines

export PATH=$PATH:$JAVA_HOME/bin
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export PATH=/home/<UTENTE >/ spark/bin:$PATH
export SPARK_LOCAL_IP =127.0.0.1

Close this tmux session (Ctrl-d) and re-create it

Start the spark shell

$ spark -shell

Click here for current version.

https://www.apache.org/dyn/closer.lua/spark/spark-2.4.4/spark-2.4.4-bin-hadoop2.7.tgz

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

Running Spark programs

The spark shell is great if you want to test some code on the fly using Scala.
We will refer to Scala because in latest versions of Spark, python is
unfortunately not supported.

In the following slides we will create some simple Spark programs (e.g. named
testX.scala) and run it with:

$ spark -shell \
> --jars spark -streaming -kafka -0-10- assembly_2 .11. jar \
> -i testX.scala

For your convenience, you’ll find the required jar in the provided repository.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

Our first program – 1

Let’s start by importing all the required stuff.

// import requirements
import org.apache.spark.streaming.Seconds
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.

PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.

Subscribe
import org.apache.spark.streaming.StreamingContext

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

Our first program – 2

Then, we configure the parameters related to kafka and the topic of interest.

// configure kafka
val kafkaParams = Map[String , Object](

"bootstrap.servers" -> "localhost :9092" ,
"key.deserializer" -> "org.apache.kafka.common.serialization.

StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.

StringDeserializer",
"group.id" -> "use_a_separate_group_id_for_each_stream",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)

)

// create a streaming context
val streamingContext = new StreamingContext(sc , Seconds (1))

// configure the stream
val topics = Array(" MyBigData ")
val stream = KafkaUtils.createDirectStream[String , String](

streamingContext ,
PreferConsistent ,
Subscribe[String , String](topics , kafkaParams)

)

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

Our first program – 3

// now process each record
val records = stream.map(record => record.value)

// create a new DStream containing only the error messages
val errors = records.filter(status => status.contains ("Error "))
errors.print()

// start the computation
streamingContext.start ()
streamingContext.awaitTermination ()

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

Our second program – 1

Now let’s operate in batch mode. . . For simplicity we will now work directly in
the spark-shell.

// open the log file
val lines = sc.textFile ("/ var/log/syslog ")

// create two new RDDs with lines containing
// either the word "error" or the word "denied"
val err = lines.filter(l => l.contains ("error "))
val den = lines.filter(l => l.contains (" denied "))

// join the two RDDs
val mergedRDD = err ++ den

// calculate the number of words in this RDD
// using map and reduce
mergedRDD.flatMap(line => line.split (" "))

.map(word => (word , 1))

.reduceByKey(_+_)
mergedRDD.count

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

Flat VS Flatmap

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

Where to write its output?

Different needs, different options. . .

HDFS

Kafka

InfluxDB

. . .

For the rest of the presentation we’ll assume InfluxDB as our default output.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Introduction

What is InfluxDB?

InfluxDB is a time series database designed to handle high write and query
loads. InfluxDB has a line protocol for sending time series data which takes the
following form:

measurement -name tag -set field -set timestamp

Conceptually you can think of a measurement as an SQL table, where the
primary index is always time. tags and fields are effectively columns in the
table. tags are indexed, and fields are not.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Introduction

InfluxDB in short. . .

Source: https://i.eurosport.com/

https://i.eurosport.com/

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

For simplicity, you can rely on your package manager and type:

$ yum install influxdb

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Execution – 1

Now, suppose we want to push our Spark real-time results in a proper InfluxDB
database. First of all, we need to create it:

$ influx
> CREATE DATABASE spark_res

Then, for a rapid test, we could check the existance of the DB with:

> SHOW DATABASES

and we could try storing a simple time series data with:

> USE spark_res
> INSERT errors ,host=serverA ,process=Storm value =76

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Execution – 2

You can check the results of the previous command with a simple temporal
query:

> USE spark_res
> SELECT "host","process","value" FROM "errors"
name: errors

time host process value
1574082487851925338 serverA storm 76

Now, we have all that’s needed to feed our artist: Grafana!

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Introduction

What is Grafana?

Grafana is defined as ”the open observability platform”. It is an easy tool to
create dashboards plotting in real-time whatever you may desire.

Among its data sources, InfluxDB is the most interesting one (for our
purposes). Through temporal queries, Grafana constantly retrieves and plot
data.

For time purposes, this part of the turorial will be hands-off . . . :-P

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Introduction

Grafana in short. . .

Source: https://cff2.earth.com

https://cff2.earth.com

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Installation

Installation

Download and uncompress it

$ wget https ://dl.grafana.com/oss/release/grafana -VERSION.tar.gz
$ tar -zxvf grafana -VERSION.tar.gz
$ cd grafana -VERSION

Configure the server

$ cp conf/defaults.ini conf/custom.ini
$ emacs conf/custom.ini

Start the server

$./bin/grafana -server web

It will run by default on port 3000. By default an administrator user with login
and password set to admin exists. After the first login, the password must be
changed.

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Configuration

Now?

Once the server is up and running, point your browser to
http://localhost:3000, then:

Create a dashboard

Create a new panel

Set your temporal query to Influx

Select the desired chart type

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Configuration

Example

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Configuration

Documentation

The following is a list of useful links to go deeper with the tools introduced in
this presentation.

W Tmux documentation

W Apache Flume documentation

W Apache Kafka documentation

W RDD Documentation (Apache Spark)

W InfluxDB documentation

W Grafana documentation

http://man7.org/linux/man-pages/man1/tmux.1.html
https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html
https://kafka.apache.org/20/documentation.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://docs.influxdata.com/influxdb/v1.7/
https://grafana.com/docs/grafana/latest/

Aim of this session Apache Flume Apache Kafka Apache Spark InfluxDB Installation Execution Grafana

Configuration

Thank you!

Now it’s time for a well deserved lunch!

	Aim of this session
	Pre-requisites

	Apache Flume
	Introduction
	Installation
	Running Flume
	Resources

	Apache Kafka
	Introduction
	Installation
	Execution
	Attaching Kafka to Flume
	Retention

	Apache Spark
	Introduction
	Installation
	Execution

	InfluxDB
	Introduction

	Installation
	Execution
	Grafana
	Introduction
	Installation
	Configuration

