
Container Orchestartion
Doina Cristina Duma (aiftim<at>infn.it)

Big Data Analytics
9-12 Dic. 2019, Bologna

(many slides – courtesy of Davide Salomoni)

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International license

• For examples linked to biology,
see e.g. “Cloud Computing
May be Key to Data
Reproducibility”.
• See also Nature, Vol. 533, 26

May 2016, pp. 452-454, “1,500
scientists lift the lid on
reproducibility”.

What is Cloud Automation
• Simply put, Cloud Automation is a set of processes

and technologies that allow to automatize several
operations related to Cloud computing.
• Doing things by hand is rarely a good idea when

complexity increases, and we have already seen
several relatively complex technologies. This is
closely linked to key topics such as reproducibility.

2

https://www.laboratoryequipment.com/article/2018/02/cloud-computing-may-be-key-data-reproducibility
https://www.nature.com/news/polopoly_fs/1.19970!/menu/main/topColumns/topLeftColumn/pdf/533452a.pdf

Microservices
• When discussing applications designed for the Cloud, you have

already seen in the previous presentations the analogy of pets
(each one is unique and irreplaceable) vs. cows (many identical
instances of a functionally equivalent “item”).
• Microservices are a way to build applications as a collection of

(potentially many) small autonomous services vs. creating a big
service (or anyway a few fat ones), called sometimes monolith.
• At high level, microservices reflect at the architectural level a

culture of autonomy and responsibility in an organization: the
single microservice can be developed and managed independently
by different teams.
• In microservices architectures, the multiple, independent

processes communicate with each other through the network.

3

4

Application architectures

Monolithic Applications
• Do everything
• Single application
• You have to distribute the entire

application
• Single database
• Keep state in each application

instance
• Single stack with a single

technology

Microservices
• Each has a dedicated task
• Minimal services for each

function
• Can be distributed individually
• Each has its own database
• State is external
• Each microservice can adopt its

own preferred technology

5

Monoliths vs. microservices

Adapted from AWS

BDP2 Davide Salomoni 6

From: LaToza, George Mason
University, Fall 2017

BDP2 Davide Salomoni 7

From: LaToza, George Mason
University, Fall 2017

An example of a microservice
architecture

• How to structure an e-
commerce application
(from
https://microservices.io/pa
tterns/microservices.html)

8

https://microservices.io/patterns/microservices.html

All good with microservices?
• Of course not. There are cases when monolithic applications might make

more sense. With microservices, remember that you should:
• Deploy each microservice independently.
• Worry about microservice orchestration.
• Unify the format of software integration and deployment pipelines.
• Compared to monolithic systems, there are more services to monitor.
• Since they form a distributed system, the model is more complex than with monoliths.

• However, with microservices:
• Reliability is much easier, because (for example) if you happen to break one

microservice, you will affect only one part, not the entire app.
• Scalability is much better. With monoliths, horizontal scaling might be impossible and,

when possible, it is connected to scaling the entire app, which is typically inefficient.

9

Automation of the release pipelines
• Strictly related to the microservice architecture is the concept of

DevOps.
• DevOps is a pattern for developing applications where Development

and Operation practices tightly integrate.
• In other words, rather than (1) writing a full “production level” application, (2)

releasing it and then (3) waiting for operational feedback, the DevOps
application release process is much more agile, and it follows tight release and
feedback schedules.

• The DevOps mantra is “release early, release often”: this implies
utilizing a set of tools and processes to facilitate automation,
monitoring and continuous integration of all the involved components
(microservices, for example) to quickly complete the development and
delivery cycles.

10

DevOps

11

Source: https://nickjanetakis.com/blog/what-is-devops

https://nickjanetakis.com/blog/what-is-devops

DevOps benefits

12

• Speed – microservices & continuous
delivery
• Innovate for customers faster
• Adapt to changing markets better
• Grow more efficient at driving business

results
• Rapid Delivery – continuous integration

and delivery
• Increase the frequency and pace of releases

• Reliability – continuous integration and
delivery, monitoring & logging
• Ensure the quality of application updates and

infrastructure changes

• Scale – automation, infrastructure as
code
• Operate and manage infrastructure and

development processes at scale
• Improved Collaboration

• Build more effective teams
• Security - automated compliance

policies, fine-grained controls, and
configuration management
• Move quickly while retaining control and

preserving compliance

Some DevOps principles

• DevOps is a comprehensive way covering all the stages of an
application lifetime.
• It is particularly applicable to distributed, microservices-based

applications, which we typically find in Cloud environments.
• It is important to know its main principles and possibly try to apply

them whenever we write small or large applications.

13

Continuous Integration
• Continuous Integration is a software development practice where

developers regularly merge their code changes into a central
repository, after which automated builds and tests are run
• The result: deployment packages that can be used by Continuous

Deployment (see later) for deployment to multiple environments.
• A widely used tool for this: Jenkins (https://jenkins.io).

14

Source: https://jaxenter.com/how-
to-move-from-ci-to-cd-with-
jenkins-workflow-128135.html

https://jenkins.io/
https://jaxenter.com/how-to-move-from-ci-to-cd-with-jenkins-workflow-128135.html

Continuous Integration

15

Why CI if I use Python?
• Python does not need a “compilation step”. However, you can and should

still use some Continuous Integration best practices in your projects, even
if you only use Python. For example, you most likely want some Quality
Assurance tests to be run automatically, such as:
• sloccount to count the lines of code (i.e. non-blank, non-comment) in a program (not

only in Python) – this seems simple, but it can give you an estimate about the
complexity of a project. See https://dwheeler.com/sloccount/.

• Pylint is “a Python static code analysis tool which looks for programming errors,
helps enforcing a coding standard, sniffs for code smells and offers simple refactoring
suggestions”. It is sometimes annoying but I would say it is a must use. See
https://pypi.org/project/pylint/.

• Pytest (https://docs.pytest.org/en/latest/index.html) and Nose2
(https://github.com/nose-devs/nose2) make it easy to write tests for code coverage.
Never underestimate the importance of writing tests in your programs!

16

https://dwheeler.com/sloccount/
https://pypi.org/project/pylint/
https://docs.pytest.org/en/latest/index.html
https://github.com/nose-devs/nose2

Continuous Deployment

• Continuous Deployment refers to the capability to deploy
applications and services to pre-production and production
environments through automation.
• Provision and configure an environment.
• Deploy and configure an application on top of it.
• After conducting multiple validations (functional performance) tests on a pre-

production environment.
• Provision and configure the production environment.
• An application is deployed to production environments through automation.

17

Continuous Deployment

18

Continuous Delivery
• Continuous Delivery is a software development practice where code changes are

automatically:
• Built,
• Tested,
• Prepared for a release to production.

• It expands upon continuous integration by deploying all code changes to a
testing environment and/or a production environment after the build stage.

• When continuous delivery is implemented properly, developers will always
have a deployment-ready build artifact that has passed through a standardized
test process.

19

Source: https://jaxenter.com/how-
to-move-from-ci-to-cd-with-
jenkins-workflow-128135.html

https://jaxenter.com/how-to-move-from-ci-to-cd-with-jenkins-workflow-128135.html

Continuous Delivery

20

Continuous Deployment vs.
Continuous Delivery

21

The “Continuous” mantra

22

Continuous learning

• The benefits of DevOps will not last for long if a continuous
improvement and feedback principle is not in place.
• This means to have real-time feedback about the application’s behavior.

• Applications should be built with:
• Monitoring;
• Auditing;
• Telemetry in mind.

BDP2 23

Continuous monitoring
• Monitoring starts in the development

phase.
• The same tools that monitor the production

environment can be employed in
development to spot performance problems
before they hit production.

• Two kinds of monitoring are required for
DevOps:
• Server monitoring.
• Application performance monitoring.

• Measuring DevOps:
• Monitoring, audit and collection of metrics

should be developed and deployed.
• Regular baselining of data for effective

comparison.
• Metrics should be captured over a period

and then compared with the baseline.
24

The DevOps tool chain

25

Where is my infrastructure?

• We have seen that, through a microservice architecture and some
related processes and tools such as DevOps, we are able to write
applications that are (or at least should be) scalable, reliable and
maintainable.
• However, when it comes to deploying these applications in the

Cloud, we naturally need to find and configure the resources that are
needed by the application.
• For example, we need to provision the VMs where we can run our

containers / microservices, exactly like we did when we created the
first VMs on Cloud@CNAF.
• In other words, we need to explicitly create our infrastructure.

26

Container orchestration
• In a previous session, we explored how containers help us to easily create

applications that are – as the name says – self-contained.
• On the other hand, we just saw that microservice architectures are based on

the composition of many independent (but communicating) services.
• Let’s combine these two points: containers can greatly help with the creation

of a microservice architecture. Actually, through docker-compose we already
learned how to create multiple containers linked together in Application
Stacks.
• However, docker-compose is limited to the composition of containers within

a single host. On the other hand, in general microservices are deployed across
multiple hosts.
• We therefore need to explore how to effectively orchestrate many containers

across distributed hosts. This is what we call container orchestration.

27

Docker Swarm (1)
• Docker Swarm is the traditional way of orchestrating containers with

Docker. Compared to other methods we’ll see later, it is relatively easy
to use. Its main features are:
• Cluster management integrated with Docker Engine: no other software than

docker is needed.
• Decentralized design: this means that any node in a Docker Swarm can

assume any role at runtime.
• Scaling: the Swarm manager can automatically scale up and down services,

adding or removing tasks.
• Desired state reconciliation: if something happens to a Swarm cluster (e.g.

some containers crash), the Swarm manager will try to reconcile the state of
the cluster to its desired state (e.g. bringing up some more containers).

28

Docker Swarm (2)
• Docker Swarm features, continued:

• Multi-host networking: the Swarm manager can handle an overlay network
spanning your services.

• Service discovery: there is a DNS server embedded in each Swarm. The
Swarm manager discovers services and assigns to each of them a unique DNS
name.

• Load balancing: you can specify how to distribute services among nodes.
• Secure by default: the communication among all nodes in a Swarm cluster is

protected by the cryptographic protocol called TLS (Transport Layer Security).
• Rolling updates: if anything goes wrong, you can roll-back a task to a previous

version of the service.

29

Hands-on with Docker Swarm

• We’ll loosely follow https://docs.docker.com/engine/swarm/swarm-
tutorial/.
• For this hands-on, we need three VMs with Docker installed.

• One of these machines will be the manager of the Swarm cluster, the other two will
be called workers.

• We’ll use our devopsXX; in order to have 3 VMs, you need to create 2 new VMs; do
it now and call devopsXX “manager”

• Important: make sure that Docker is installed on all three VMs.
• We also need the IP addresses of the 3 machines involved, as well as the

following open ports for all of them, to allow communication among the
nodes (once you have your 3 VMs, properly set up the security groups):
• TCP port 2377 for cluster management communications.
• TCP and UDP port 7946 for communication among nodes.
• UDP port 4789 for overlay network traffic.

30

https://docs.docker.com/engine/swarm/swarm-tutorial/

Docker Swarm hands-on: our use case

• To make things simple and quick, we’ll use a Docker Hub container
called “nginx”
• Nginx is a commonly used web server (see https://nginx.org/en/), like

Apache.
• We’ll create a Swarm service based on the nginx container and

deploy it in 5 instances, distributed across 2 VMs (swarm-wnX1 and
swarm-wnX2).
• All these containers will not be directly accessible from the Internet. So, in the

end we’ll have 5 web servers.
• We’ll then deploy a load balancer on a 3rd VM (the manager). The

load balancer will be reachable via a public IP address.
• When people hit this IP address, the load balancer will route our requests to

one of the nginx containers on swarm-wnX1 or swarm-wnX2.
31

https://nginx.org/en/

Docker Swarm: our architecture

32

swarm-wn1 swarm-wn2

Swarm Manager

nginxnginx

nginx

nginx

Load Balancer

Internal network

Public network

HTTP query
Remote user

Swarm clusternginx

Create a Swarm cluster
• Login to the VM that should become the “Swarm manager” (the one you

called “manager”=devopsX).
• On the manager, issue the command

• docker swarm init --advertise-addr <MANAGER-PRIVATE-IP>
• This initializes a Swarm cluster and tells the workers about the IP address of the Swarm

manager. Note that this should be the manager’s private IP address, not the public one.
• Docker answers confirming that the current node is now manager and gives us the

command to add a worker to the Swarm cluster. Note it down.
• Now log in to swarm-wnX1 and swarm-wnX2, and on each of them issue the

command reported above by the manager
• It should be something like docker swarm join –token <token> <ip_addr>:2377

• On the manager, issue the command docker node ls to view the current
state of the Swarm cluster.
• It should show the manager and the two workers, all in the “active” state. There are no

running services in the cluster yet.

33

Create a Swarm service

• We will now create a “service”. We have to define:
• How to name it – we’ll call it “web_swarm”.
• The container image it is based on (nginx, found on DockerHub).
• The port that can be used to contact the service.
• How many replicas of the service we want to deploy.

• This is the command we have to issue on the manager:
docker service create --replicas 3 -p 8082:80 --name web_swarm nginx

• With this command, we create 3 docker containers, each one based on the nginx
image.

• These containers will be automatically distributed across our Swarm cluster. Each
container will expose port 80, which will be mapped to port 8082 on a VM host
(swarm-wn1 or swarm-wn2).

34

Check the status of the Swarm service
• The status of our service can be checked on the manager with

docker service ls
• It will take some time before the service is shown as replicated 3 times, as

requested – just repeat the command until it shows 3/3 replicas.

• In order to see where (i.e. on which nodes) the service was
distributed by Swarm, issue this command on the manager:
docker service ps web_swarm

• Once you have the 3 web_swarm replicas running, log in to either
swarm-wn1 or swarm-wn2 and issue this command there:
docker ps

• You should see that one or more nginx containers are running on the node.

35

How to access the web_swarm service

• Remember that so far, the nodes of the Swarm cluster are only
reachable via their private IP addresses. Therefore, we cannot directly
use a browser to reach the web servers.
• But internally they can be reached (look back at the architectural

diagram). So, log in e.g. to the manager and issue the command
curl http://<private_ip_address_of_VM1>:8082/ (or VM2)
• You should get an answer. Or not?
• Note that you will get an answer even if there is no web_swarm container

running on VM1 (or VM2). How can you prove that?

36

Scaling up or down and draining
• When we created our service, we specified --replicas 3. If you

want to scale the service to another number of replicas, just issue
this command on the manager:
docker service scale web_swarm=7

• What is happening? On the manager, check with
docker service ls
docker service ps web_swarm

• Now suppose that you want to remove the service web_swarm from
e.g. swarm-wn2 (because, for example, you want to shut it down for
any reason). This is called draining a node. Try this:
docker node update --availability drain <VM2>

• What is happening? Check with docker service ps web_swarm.

37

Load balancing the web servers

• We now want to create a load balancer on the manager node.
• Its purpose is to expose a public IP address which will be reachable from the

Internet and balance the queries to that IP address to the web_swarm services
that are deployed in the Swarm cluster.

• The same nginx container that we previously used to create web
servers can also be configured to act as load balancer. We just need to
have a suitable nginx configuration file.
• In this configuration file, we need to list the IP address (the private IP

addresses, in our use case!) of all the hosts participating to the Swarm cluster.
• That is, the private IP addresses of the manager, swarm-wn1 and swarm-wn2.

38

Create and run the load balancer
• On the manager, create the following Dockerfile in the same directory

where you have put nginx.conf:
FROM nginx
COPY nginx.conf /etc/nginx/nginx.conf

• We can now build and then run our container with the load balancer
configuration with commands we already know:
docker build -t load_balancer .
docker run -p 8080:80 -d load_balancer

• If we now open http://<manager_public_ip>:8080/, we should get
a web page displayed. Try it out now.
• From which web_swarm node is the answer coming? In the nginx.conf file we

told the web server to log some information. Look at this information with the
following command:
docker logs -f <load_balancer container>

39

The nginx configuration for load
balancing

• On the manager, create this file and call it nginx.conf:

worker_processes 1;
events { worker_connections 1024; }
http {

sendfile on;
upstream swarm_cluster {

server <manager_ip_addr>:8082;
server <VM1_ip_addr>:8082;
server <VM2_ip_addr>:8082;

}

server {
listen 80;
location / {

proxy_pass http://swarm_cluster;
}

}
log_format upstreamlog '[$time_local] from $remote_addr to $upstream_addr';
access_log /var/log/nginx/access.log upstreamlog;
}

40

A few notes

• Docker Swarm services are persistent. Try to shut down all 3 nodes
and then start only the manager. You will see that the manager brings
up all replicas automatically on itself.
• The load balancer configuration, on the other hand, is a stand-alone container

and does not automatically restart.

• Remove a Swarm service with:
docker service rm <service_name>

• An interesting point is to combine Docker Swarm with custom Docker
images or with Docker Compose. This is left as an exercise.

41

Docker Swarm: our architecture

42

Swarm Manager

nginxnginx

nginx

nginx

Load Balancer

Internal network

Public network

HTTP query
Remote user

Swarm clusternginx

swarm-wn1 swarm-wn2

Kubernetes
• Kubernetes is an open-source platform that

coordinates a highly available cluster of
computers that are connected to work as a single
unit. It is backed by Google and RedHat.
• Applications need to be containerized.
• Kubernetes automates the distribution and

scheduling of application containers across a
cluster in a fairly efficient way.
• A Kubernetes cluster can be deployed on either

physical or virtual machines.

43

https://kubernetes.io

https://github.com/kubernetes/kubernetes
https://kubernetes.io/

Kubernetes cluster resources

• A Kubernetes cluster consists of two types
of resources:
• The Master coordinates the cluster
• Nodes are the workers that run applications

• The Master is responsible for managing
the cluster
• coordinates all activities in your cluster, such as

scheduling applications, maintaining
applications' desired state, scaling applications,
and rolling out new updates.

• A node is a VM or a physical computer that
serves as a worker machine in a
Kubernetes cluster

44

Kubernetes Master/Nodes processes
• The Kubernetes Master is a collection of three processes that run on a single

node in your cluster, which is designated as the master node. These processes
are:
• kube-apiserver
• kube-controller-manager
• kube-scheduler

• Each individual Node in your cluster runs two processes:
• kubelet, which communicates with the Kubernetes Master.
• kube-proxy, a network proxy which reflects Kubernetes networking services on each node.

• Moreover, each Node runs a container runtime (like Docker) responsible for
pulling the container image from a registry, unpacking the container, and running
the application.
• A Kubernetes cluster that handles production traffic should have a minimum of

three nodes.

45

https://kubernetes.io/docs/admin/kube-apiserver/
https://kubernetes.io/docs/admin/kube-controller-manager/
https://kubernetes.io/docs/admin/kube-scheduler/
https://kubernetes.io/docs/admin/kubelet/
https://kubernetes.io/docs/admin/kube-proxy/

Kubernetes Objects

• Kubernetes contains a number of abstractions that represent the
state of your system: deployed containerized applications and
workloads, their associated network and disk resources, and other
information about what your cluster is doing.
• These abstractions are represented by objects in the Kubernetes API.
• The basic Kubernetes objects include:

• Volume
• Namespace
• Deployment
• Pod
• Service

46

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/services-networking/service/

Kubernetes volume

• As we have already seen, on-disk files within a container are
ephemeral. This presents some problems for non-trivial applications
when running in containers.
• When a Container crashes, kubelet will restart it, but the internal container

files will be lost - the Container starts with a clean state.
• When running Containers together in a Pod it is often necessary to share files

between those Containers.

• The Kubernetes Volume abstraction solves both of these problems.

47

Kubernetes Namespaces

• Kubernetes supports multiple virtual clusters backed by the same
physical cluster.
• These virtual clusters are called namespaces.

48

Kubernetes Deployment
• Once you have a running Kubernetes cluster, you can deploy

your containerized applications on top of it. To do so, you
create a Kubernetes Deployment configuration.

• The Deployment tells Kubernetes how to create and update
instances of your application. Once you've created a
Deployment, the Kubernetes master schedules application
instances onto individual Nodes in the cluster.

• Once the application instances are created, a Kubernetes
Deployment Controller continuously monitors those
instances. If the Node hosting an instance goes down or is
deleted, the Deployment controller replaces it. This
provides a self-healing mechanism to address machine
failure or maintenance.

• In a pre-orchestration world, installation scripts would often
be used to start applications, but they did not allow
recovery from machine failure. By both creating your
application instances and keeping them running across
Nodes, Kubernetes Deployments provide a fundamentally
different approach to applications.

49

Kubernetes Pod
• A Pod is the basic building block of Kubernetes. It

represents a running process on your cluster.
• A Pod encapsulates an application container, storage

resources, a unique network IP, and options that
govern how the container(s) should run.

• Pods that run a single container. The “one-container-
per-Pod” model is the most common Kubernetes use
case; in this case, you can think of a Pod as a wrapper
around a single container, and Kubernetes manages
the Pods rather than the containers directly.

• Pods that run multiple containers that need to work
together. A Pod might encapsulate an application
composed of multiple co-located containers that are
tightly coupled and need to share resources. The Pod
wraps these containers and storage resources
together as a single manageable entity.

50

Pod

Node

• A Kubernetes Service is an abstraction which
defines a logical set of Pods and a policy by
which to access it.
• Although each Pod has a unique IP address,

those IPs are not exposed outside the cluster
without a Service. Services allow your
applications to receive traffic.
• Services match a set of Pods using labels and

selectors, a grouping primitive that allows
logical operation on objects in Kubernetes.
Labels are key/value pairs attached to objects
and can be used in any number of ways:
• Designate objects for development, test, and

production
• Embed version tags
• Classify an object using tags

Kubernetes Services

51

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels

Kubernetes architecture

52

Control plane

Data plane

Kubernetes hands-on

• https://baltig.infn.it/corsi_formazione_ccr/corso_bd_2019/tree/ma
ster/docker
• Leveraging a K8S cluster already created on https://rancher.cloud.cnaf.infn.it/

• In addition you can use Minikube - to deploy a Kubernetes cluster on
your own on your laptop
• Minikube is a lightweight Kubernetes implementation that creates a

VM on your local machine and deploys a simple cluster containing
only one node. See https://github.com/kubernetes/minikube for
details.

53

https://baltig.infn.it/corsi_formazione_ccr/corso_bd_2019/tree/master/docker
https://rancher.cloud.cnaf.infn.it/
https://github.com/kubernetes/minikube

Kubernetes as a Service
• Deploying and managing a Kubernetes cluster is generally not trivial (that’s

why Minikube was introduced), since it requires effort and several skills.
• It would be nice to automatize this part as well and focus just on deploying

our containers on a Kubernetes cluster that somebody else instantiates for
us.
• Many Cloud providers give us just that: a Kubernetes as a Service.

• Amazon provides what they call the “Elastic Container Service for Kubernetes”, or
EKS for short. Other providers have similar offerings.

• We have seen that Kubernetes cluster consist of a control plane, where the masters
are running, and of a data plane, where we have our worker nodes and containers.
EKS provides a managed control plane, deployed in a fully highly available setup.
Since this a service managed by AWS, we don’t need to care about updates to the
Kubernetes software itself.

54

Apache Mesos
• Apache Mesos

(http://mesos.apache.org) is a
software layer over which
diverse frameworks can run.
• In some way, Mesos is the

opposite of virtualization:
while virtualization divides a
single physical resource into
many virtual ones, Mesos
allows you to share a large
cluster of machines between
different frameworks.

55

http://mesos.apache.org/

How Mesos works
1. Agent 1 reports to the master that it has 4

CPUs and 4 GB of memory free. The master
then invokes the allocation policy module,
which tells it that framework 1 should be
offered all available resources.

2. The master sends a resource offer describing
what is available on agent 1 to framework 1.

3. The framework’s scheduler replies to the
master with information about two tasks to
run on the agent, using <2 CPUs, 1 GB RAM>
for the first task, and <1 CPUs, 2 GB RAM> for
the second task.

4. Finally, the master sends the tasks to the
agent, which allocates appropriate resources
to the framework’s executor, which in turn
launches the two tasks (depicted with dotted-
line borders in the figure). Because 1 CPU and
1 GB of RAM are still unallocated, the
allocation module may now offer them to
framework 2.

56

• From http://mesos.apache.org/documentation/latest/architecture/

http://mesos.apache.org/documentation/latest/architecture/

Mesos fine-grained sharing

57

Docker Swarm, Kubernetes, Mesos:
which one to choose? (1)

• We have seen (with different degrees of in-depth analysis) the three
current major solutions for container or resource orchestration,
which is a topic that sooner or later normally comes up with anything
but the simplest big data problems.
• Some general considerations on when to use what:

• Docker Swarm for smaller projects and for testing purposes. Easy to use if you
are already familiar with Docker.

• For larger, enterprise-like solutions, Kubernetes. It’s also “the Google way of
doing it”. But mind the rather steep learning curve.

• Mesos for very large clusters and for workflow-based solutions. It can be fairly
complex, so it might need a sizeable support team.

58D.C. Duma

Docker Swarm, Kubernetes, Mesos:
which one to choose? (2)

• From https://www.bogotobogo.com/DevOps/DevOps-Docker-Swarm-vs-
Kubernetes-vs-Apache-Mesos.php

59

https://www.bogotobogo.com/DevOps/DevOps-Docker-Swarm-vs-Kubernetes-vs-Apache-Mesos.php

Infrastructure as Code (1)

• With the idea of Infrastructure as Code (IaC), instead of manually
creating the infrastructure we need for our applications (e.g. virtual
machines, disk volumes, installations, configurations), we define what
we want through machine-readable definition files.
• IaC is based on the realization that “Complexity kills Productivity”: it

therefore aims to simplify how you can realize complex infrastructures and
set-ups.

• There are many tools that allow us to combine automation with
virtualization. With IaC, all the specifications for the infrastructure we
are generating should be explicitly written into configuration files.

60

Infrastructure as Code (2)
• Some of the most popular tools for IaC are Puppet

(https://puppet.com), Ansible (https://www.ansible.com), Terraform
(https://www.terraform.io) and Chef (https://www.chef.io/chef/).
Docker itself provides some form of IaC.
• While we won’t explore any of these in detail in this course, it is

important to highlight that it is fundamental that whatever you do
with your code and data should be reproducible and manageable.
• You are therefore encouraged to use automated installation and

configuration tools in your work, also because they enable you to
fully profit from the DevOps paradigm we have already seen
(Continuous Integration, Continuous Delivery, Deployment
Orchestration).

61

https://puppet.com/
https://www.ansible.com/
https://www.terraform.io/
https://www.chef.io/chef/

Serverless technologies

• With serverless technologies, we perform another
step toward automating and facilitating the use of
Cloud resources.
• Remember that - what eventually matters are the

applications, not the infrastructure.

62

• Recall what happens with traditional Cloud applications, of which we have
already seen several examples:
• We need to provision and manage the resources (e.g. VM1, VM2, the disks, the S3

buckets, etc.) for our applications.
• We are charged if we keep the resources up, even if they are doing nothing.
• We are responsible to apply all the updates and security patches to our servers.

What is serverless, or FaaS
• With serverless, a Cloud provider is responsible for executing a piece of

code (written by you) by dynamically allocating the resources needed by
the code.
• You are only charged for the resources used to run the code and only when

the code runs.
• This code is typically a function. Thus, serverless computing is also called

Functions as a Services, or FaaS.
• The running of these functions can be triggered depending on some

conditions, such as for example database events, queueing services, file
uploads, scheduled events, various alerts, etc.
• Your applications should therefore be structured around a set of stateless

functions à this is consistent with the idea of microservices we have
already seen.

D.C. Duma 63

AWS Lambda
• In the Amazon world, serverless computing is called AWS Lambda.
• This is how it works (picture from Amazon):

Davide Salomoni 64

A simple AWS Lambda example:

How an AWS Lambda looks like

• We won’t do a direct hands-on with Lambda.
• However, this how a sample Python function would look like in the

AWS Lambda Console:

65

Testing an AWS
Lambda function

• My Python function just replies
to some events, printing out
their content. I am testing it
creating a test event with some
dummy values, as shown in the
picture on the right.

66

Test results

• When I now actually run the test, this is what is shown:

67

Why is this useful?
• Because I could attach a Lambda function to any event that interests me.

• For example, instead of writing a dummy function such as the above, I could have
put in the code that transforms a picture from color to grayscale, using e.g. our well-
known single.py program.

• I could have then connected my Lambda function to an S3 bucket, so that
any time a new picture is uploaded to the bucket, my function runs on
some (dynamically provisioned) AWS resource, and automatically
generates a grayscale version of the image.
• Note that in this case I do not have to explicitly start up any VMs nor containers!
• You could connect a Lambda e.g. to S3, to Alexa, to changes in a DB, to something

being published in a queue, to an IoT device, to a MapReduce workflow, etc.
• Imagine for instance to connect a Lambda function to a DNA sequencer:

the function could dynamically process the received data and do something
(which could also be rather complex) with it, as data is being produced, all
without you requiring to explicitly instantiate, run or monitor anything!

68

Template-based orchestration

• We have seen Function as a Service as a way of abstracting from
resource descriptions in Cloud computing. This is handy and useful,
but sometimes applications need to have a higher-level description
than a “function”, because they have several components.
• There are several templating mechanisms that can be used to

describe and provision resources needed by an application in a Cloud
infrastructure.
• In some sense, this extends what we have seen e.g. with Docker

Swarm to cover any requirements your applications might have and
automatize your deployments in the Cloud.

69

AWS CloudFormation

• The Amazon way of defining a complete topology for an application is
through the CloudFormation language.

70

TOSCA
• AWS CloudFormation is Amazon-specific. As such, it

can only be used with AWS.
• TOSCA (Topology and Orchestration Specification for

Cloud Applications) is on the other hand a public
standard:
• It is an OASIS (https://www.oasis-open.org/) standard

language to describe a topology of cloud-based web
services, their components, relationships, and the
processes that manage them

• It standardizes the language to describe:
• The structure of an IT Service (its topology model) .
• How to orchestrate operational behavior (plans such as

build, deploy, patch, shutdown, etc.) .
• A declarative model that spans applications, virtual and

physical infrastructures.

71

https://www.oasis-open.org/org

Vision

73

HEAT vs TOSCA

Davide Salomoni 75

Comparing TOSCA & HEAT

76

What can you do with a TOSCA-driven
solution?

• TOSCA and other template-driven orchestration mechanisms allow us
to realize service composition, i.e. to combine different services to
implement complex topologies.
• An example of service composition developed within INFN is DODAS

(Dynamic On-Demand Analysis Service), where we facilitate the
deployment of relatively complex set-ups on any cloud provider with
almost zero effort.
• DODAS currently provides support to generate:

• An HTCondor-based batch system as a Service
• A Big Data platform for Machine Learning as a Service
• Plus extensions of these two integrating community-specific services.

77

Why is this useful
• Regardless of the details of DODAS, what is

important is often to have solutions in science that
allow:
• Creation and management of on-demand systems (batch

or Spark, for example) for data processing.
• But these should not be tied to a specific cloud provider (e.g.

Amazon).
• Exploitation of opportunistic computing.

• Intended as resources not necessarily or permanently dedicated
to a specific experiment and/or activity.

• Elastic extension of existing facilities.
• To absorb peaks of resource usage.
• To accommodate workflows with special requirements.

78

The DODAS architectural pillars

• Everything is cloud and experiment agnostic as much as possible.
• There are three major handles that make service composition in

DODAS highly customizable:

79

To automate configuration
and deployment of
custom services and/or
dependencies

To support user
tailored
computing
environments

To define input
parameters and customize
the workflow execution

Application management

• In DODAS, we use Mesos for resource management and
Marathon, a Mesos framework to launch long-running
applications, for container orchestration (Kubernetes is
also supported).
• Container orchestrator is the layer responsible for the execution

of end user services.
• Any framework and/or software application can run on a

DODAS-provided cluster.
• DODAS provides by default two set of recipes, to create HTCondor &

Spark clusters.
80

DODAS roles

81

Interact with DODAS PaaS
services

Care only about software
applications

Manager

Davide Salomoni, Daniele Spiga

Software Application Software
Application

Software
Application

Software Application

82

The Big Picture

82

Home IdP

AuthN

DODAS
User

IAM
PaaS Orchestrator

Submit TOSCA

IM

Private Cloud Public Cloud

Marathon

Provsioning, Setup, Configuration Provsioning, Setup, Configuration

MasterMasterMaster
Slave

ExecutorExecutorExecutor
Software

Application
Software

Application

Slave
ExecutorExecutorExecutor

MarathonMasterMasterMaster

Slave
ExecutorExecutorExecutor

Slave
ExecutorExecutorExecutor

D
ata Analysts

Uses Softw
are Applica

tions

Admin

Pa
aS

Ia
aS

83

The DODAS Monitoring System

BDP2 84

Batch System as a Service: the AMS use case

IAM
Auth

N

TOSCA

template

PaaS
Orchestrator

Sc
he

dd

Collector

Negotiator

Batch System

Data Cache/
Local Storage

Startd

Data Cache

Batch System

CERN

INFN-CNAF

Remote Storage

Home IdP

Submit Jobs

Submit Jobs

Cu
rr

en
t M

od
el

Any Cloud

D
O

DA
S

Ad
de

d
Va

lu
e

Startd
Startd

DODAS

85

HTCondor Pool Extension: the CMS use
case

CMS Physicists

Squid Proxy

CVMFS
CVMFS

CVMFS

Auto-Register and
GET jobs

Master

Load
Balancer

SlaveSlave

Slave

HTCondor

HTCondorHTCondor

HTCondor

HTCondor

CMS
Distributed
Storage

ü Completely transparent to CMS physicists
ü Seamlessly integrating the global infrastructure

CertCache

DATA I/O

DODAS
ephemeral site

Token Translation

X.509

OpenID Connect

86

Elastic use of resources

- Elasticity and self-healing
- Stability over days/weeks (120k jobs)
- Handling “special requirements”
high memory jobs

BDP2 87

A sample DODAS TOSCA template

Hosts ConfigurationsUser Inputs

Two excerpts fro
m a real Template

Manager

88

Not only HTCondor

89

DODAS for Machine Learning as a Service

End Users

Spark
Dispatcher

Master

Load
Balancer

SlaveSlave

Slave

Spark Node

Spark NodeSpark Node

Spark Node

Spark Node

Spark Node

DODAS
ephemeral site

• Analysis of “Data Cache” related metadata flow
• To improve caching layer management: Smart Cache

1. Reading HDFS@CERN data
2. Data enrichment and reduction

with Spark jobs
• Storing of output data to HDFS

3. Analysis of structured data

Recap of Cloud Automation
• We covered some basic concepts about Cloud Automation.
• After explaining what Cloud Automation is, we discussed the difference between

microservices and monoliths.
• We then explored the DevOps principles, and discussed the “Continuous Approach”

(Continuous Integration, Development, Learning, etc.).
• We then moved on to discuss container orchestration, starting with Docker Swarm. As

hands-on, we created a Swarm cluster load balancing multiple web servers,
distributed across multiple nodes.

• After Swarm, we described Kubernetes and Mesos, and provided a comparison
between these three orchestration tools.

• Simplification in Cloud Automation led us to consider Infrastructure as Code, followed
by the new paradigm of Serverless Technologies (or FaaS). We showed a simple FaaS
example with AWS Lambda.

• We finished our Cloud Automation journey considering two high-level languages for
complex template-based orchestration of resources: AWS Cloud Formation and
TOSCA, providing an example (DODAS) of service composition.

90

