INFN

Container Orchestartion

Doina Cristina Duma (aiftim<at>infn.it)

Big Data Analytics

9-12 Dic. 2019, Bologna

(many slides — courtesy of Davide Salomoni)

This work is licensed under a Creative Commons Attribution- @ @ @
NonCommercial-ShareAlike 4.0 International license

What is Cloud Automation @

HOW MUCH PUBLISHED WORK IN YOUR

* Simply put, Cloud Automation is a set of processes | #ewo S rerropucisLer
and technologies that allow to automatize several L pwecsao emmam
operations related to Cloud computing. - e W

. . . . N N & o2

* Doing things by hand is rarely a good idea when — - E—
complexity increases, and we have already seen (] —
several relatively complex technologies. This is a - =

i B B w2
}

closely linked to key topics such as reproducibility.

* For examples Ilnked to b.IOIOgy’ IS THERE A REPRODUCIBILITY CRISIS? BIOLOGY MEDICINE OTHER
see e.g. “Cloud Computing |
May be Key to Data il
Reproducibility”.

e See also Nature, Vol. 533, 26
May 2016, pp. 452-454, “1,500

scientists lift the lid on . o
umber of respondents from each discipline:
re p rod u Ci bi | itv ” ‘ Biology 703, Chemistry 106, Earth and environmental 95, i

Medicine 203, Physics and engineering 236, Other 233

N
a
N
o
=3
@
w
o
<)
=]
a
@
-
=
w
o
N

100%

ol | || I | I i
(%2
o
N
% of published literature that
is reproducible (predicted)

o
N

https://www.laboratoryequipment.com/article/2018/02/cloud-computing-may-be-key-data-reproducibility
https://www.nature.com/news/polopoly_fs/1.19970!/menu/main/topColumns/topLeftColumn/pdf/533452a.pdf

Microservices LUl

* When discussing applications designed for the Cloud, you have
already seen in the previous presentations the analogy of pets
(each one is unique and irreplaceable) vs. cows (many identical
instances of a functionally equivalent “item”).

* Microservices are a way to build applications as a collection of
(potentially many) small autonomous services vs. creating a big
service (or anyway a few fat ones), called sometimes monolith.

* At high level, microservices reflect at the architectural level a
culture of autonomy and responsibility in an organization: the
single microservice can be developed and managed independently
by different teams.

* In microservices architectures, the multiple, independent
processes communicate with each other through the network.

Application architectures @

1. MONOLITH 2. MICROSERVICES

oo N R

I} \

[! [8 Users

8-)

‘oo ccennees Users Service

—— e

=) | oo > (E Threads

P L L Lt —_—

$ — T \ J/

! @ Posts 1 Threads Service

')

Vemmc e ar
b : ‘ g @ Posts
node.js API Service

Posts Service

Monoliths vs. microservices LUl

Monolithic Applications [G] Microservices

* Do everything e Each has a dedicated task
* Single application Minimal services for each
* You have to distribute the entire function
application e Can be distributed individually

* Single database

» Keep state in each application
instance

« Single stack with a single * Each microservice can adopt its
technology own preferred technology

e Each has its own database
e State is external

Adapted from AWS

Organization in a monolith ™

Frontend Classic teams:

/H\/H\/H\ Orders, shipping, catalog 1 team per “tier”

O
O Backena
ﬁ Orders, shipping, catalog
0

Database

@
From: LaToza, George Mason
ol @ Orders, shipping, catalog University, Fall 2017
i H 6

Organization around business capabilities

AN

/(:)\ /H

O

o

IN MIcroservices

/i\ﬁﬁ Orders

O
/H\Q Shipping

O Catalog

H

Example: Amazon

Teams can focus on one
business task
And be responsible
directly to users

“Full Stack”

“2 pizza teams”

INFN

From: LaToza, George Mason
University, Fall 2017

7

An example of a microservice
architecture

* How to structure an e-
commerce application
(from Mobi s0p
https://microservices.io/pa
tterns/microservices.html)

API
» | GATEWAY
4

Storefront
WebApp

https://microservices.io/patterns/microservices.html

All good with microservices? Lo

* Of course not. There are cases when monolithic applications might make
more sense. With microservices, remember that you should:
* Deploy each microservice independently.
* Worry about microservice orchestration.
* Unify the format of software integration and deployment pipelines.
* Compared to monolithic systems, there are more services to monitor.
* Since they form a distributed system, the model is more complex than with monoliths.

* However, with microservices:

* Reliability is much easier, because (for example) if you happen to break one
microservice, you will affect only one part, not the entire app.

* Scalability is much better. With monoliths, horizontal scaling might be impossible and,
when possible, it is connected to scaling the entire app, which is typically inefficient.

Automation of the release pipelines Lo

* Strictly related to the microservice architecture is the concept of
DevOps.

* DevOps is a pattern for developing applications where Development
and Operation practices tightly integrate.

* In other words, rather than (1) writing a full “production level” application, (2)
releasing it and then (3) waiting for operational feedback, the DevOps

application release process is much more agile, and it follows tight release and
feedback schedules.

* The DevOps mantra is “release early, release often”: this implies
utilizing a set of tools and processes to facilitate automation,
monitoring and continuous integration of all the involved components

(microservices, for example) to quickly complete the development and
delivery cycles.

DevOps | @

Source: https://nickjanetakis.com/blog/what-is-devops

11

https://nickjanetakis.com/blog/what-is-devops

DevOps benefits

Delivery Pipeline

INFN

BUILD > TEST

> RELEASE D

4 PLAN [{<4

MONITOR

L\

YOUR COMPANY

Feedback Loop

* Speed — microservices & continuous
delivery

* Innovate for customers faster

* Adapt to changing markets better

* Grow more efficient at driving business
results

* Rapid Delivery — continuous integration
and delivery
* Increase the frequency and pace of releases
* Reliability — continuous integration and
delivery, monitoring & logging

* Ensure the quality of application updates and
infrastructure changes

SRR
CUSTOMERS

Scale — automation, infrastructure as
code

* Operate and manage infrastructure and
development processes at scale

Improved Collaboration
e Build more effective teams

Security - automated compliance
policies, fine-grained controls, and
configuration management

* Move quickly while retaining control and
preserving compliance

12

Some DevOps principles @

* DevOps is a comprehensive way covering all the stages of an
application lifetime.

* It is particularly applicable to distributed, microservices-based
applications, which we typically find in Cloud environments.

* It is important to know its main principles and possibly try to apply
them whenever we write small or large applications.

Continuous Integration @

* Continuous Integration is a software development practice where
developers regularly merge their code changes into a central
repository, after which automated builds and tests are run

* The result: deployment packages that can be used by Continuous
Deployment (see later) for deployment to multiple environments.

* A widely used tool for this: Jenkins (https://jenkins.io). @ o
nkin
< Je S

Source: https://jaxenter.com/how-
to-move-from-ci-to-cd-with-
jenkins-workflow-128135.html

14

https://jenkins.io/
https://jaxenter.com/how-to-move-from-ci-to-cd-with-jenkins-workflow-128135.html

Continuous Integration

o
12
I
S S % LY S
'~] £ ~ £ r~
I 15 % S I
RS £ £ .9 &
S & kS ¢S &
25 & Q Q& &
QQOQ (1@ I @
gy S ¥ 58 & 9 S &
Fo F N § 9 F
Yo By *~ @ ~ %)
& & S & é
o S S <
G
Vi CONTINUOQUS INTEGRATION

CONTINUOUS DELIVERY

APPROVE DEPLOY @

®

INFN

AUTOMATIC DEPLOY
CONTINUOUS DEPLOYMENT
S AUTOMATED N & AUTOMATED N
Q) AN (0}
Source CoNTROL BuiLp STAGING
COMMIT CHANGES RUN BUILD AND UNIT TESTS DEPLOY TO TEST ENVIRONMENT

RUN INTEGRATION TESTS, LOAD TESTS, AND OTHER TESTS

>(©
»

PrODUCTION
DEPLOY TO PRODUCTION
ENVIRONMENT

Why CI if | use Python? @

* Python does not need a “compilation step”. However, you can and should
still use some Continuous Integration best practices in your projects, even

if you only use Python. For example, you most likely want some Quality
Assurance tests to be run automatically, such as:

* sloccount to count the lines of code (i.e. non-blank, non-comment) in a program (not
only in Python) — this seems simple, but it can give you an estimate about the
complexity of a project. See https://dwheeler.com/sloccount/.

* Pylint is “a Python static code analysis tool which looks for programming errors,
helps enforcing a coding standard, sniffs for code smells and offers simple refactoring
suggestions”. It is sometimes annoying but | would say it is a must use. See

https://pypi.org/project/pylint/.
* Pytest (https://docs.pytest.org/en/latest/index.html) and Nose2

(https://github.com/nose-devs/nose2) make it easy to write tests for code coverage.
Never underestimate the importance of writing tests in your programs!

16

https://dwheeler.com/sloccount/
https://pypi.org/project/pylint/
https://docs.pytest.org/en/latest/index.html
https://github.com/nose-devs/nose2

Continuous Deployment @

* Continuous Deployment refers to the capability to deploy
applications and services to pre-production and production
environments through automation.

e Provision and configure an environment.
* Deploy and configure an application on top of it.

» After conducting multiple validations (functional performance) tests on a pre-
production environment.
* Provision and configure the production environment.
* An application is deployed to production environments through automation.

Continuous Deployment

INFN

Vi CONTINUOUS INTEGRATION

CONTINUOUS DELIVERY

CONTINUOUS DEPLOYMENT

APPROVE DEPLOY @
AUTOMATIC DEPLOY @

& AUTOMATED £ AUTOMATED
Q) >(0)

Source CoNTROL BuiLp
COMMIT CHANGES RUN BUILD AND UNIT TESTS

> (o) > (o)

STAGING PRODUCTION
DEPLOY TO TEST ENVIRONMENT DEPLOY TO PRODUCTION
RUN INTEGRATION TESTS, LOAD TESTS, AND OTHER TESTS ENVIRONMENT

Continuous Delivery (INFN

e Continuous Delivery is a software development practice where code changes are
automatically:
* Built,
* Tested,
* Prepared for a release to production.

* It expands upon continuous integration by deploying all code changes to a
testing environment and/or a production environment after the build stage.

* When continuous delivery is implemented properly, developers will always
have a deployment-ready build artifact that has passed through a standardized

test process.

Continuous Delive
Source: https://jaxenter.com/how- M“ Deploy

to-move-from-ci-to-cd-with-
jenkins-workflow-128135.html

- Complex Delivery Pipelines
Delivery of App and Config 19

https://jaxenter.com/how-to-move-from-ci-to-cd-with-jenkins-workflow-128135.html

Continuous Delivery

Application Release Management

Cloud Provisioning

Application Deployment Automation

Development Build Package Test Stage Prod
Repository Environment Environment Environment

CONTINUOUS INTEGRATION
CONTINUOUS DEPLOYMENT

CONTINUOUS DELIVERY

INFN

@ £ AUTOMATED > @ © AUTOMATED > @

Source CoNTROL BuiLp STAGING
COMMIT CHANGES RUN BUILD AND UNIT TESTS

DEPLOY TO TEST ENVIRONMENT
RUN INTEGRATION TESTS, LOAD TESTS,

>(©

PrRODUCTION
DEPLOY TO PRODUCTION
AND OTHER TESTS ENVIRONMENT

Continuous Deployment vs. (NN
Continuous Delivery

Continuous Delivery

Unit Test Platform Test Deliver to Application Deploy to Post
Staging Acceptance tests Production deploy tests

Continuous Deployment

Unit Test Platform Test Deliver to Application Deploy to Post
Staging Acceptance tests Production deploy tests

21

The “Continuous” mantra

Proof of
Concept

“Continuous” Approach

_/'

Development

and Continuous Continuous Continuous Continuous
Automated Integration Delivery Testing Deployment

Build

* Build tools for ¢ Compilation ¢ Deployment * Functional ¢ Production
automating e Unit Test into Multiple Testing Deployment
build process so Execution Environment * Load Testing with Approval
wecan start « Static Code Using Approval » Security Testing Workflow for
with Analysis Workflow Governance
Continuous
Integration

INFN

Continuous

Monitoring
and Security

e Failure

Notifications on
Build Execution,
Failed
Deployment,
unavailability of

22

Continuous learning L

* The benefits of DevOps will not last for long if a continuous
improvement and feedback principle is not in place.

* This means to have real-time feedback about the application’s behavior.
* Applications should be built with:
° M0n|t0r|ng, Event Router wmp Destsitr:::ions
Graph
e Auditing; P
e Telemetry in mind.

Alert

h

h Application

o Operating System

BDP2 Monitoring Framework

Events, Logs, Metrics

23

Continuous monitoring L

* Monitoring starts in the development

p h ase. Metrics Impact
. The same tools that monitor the productlon If the number of deployments is higher prior to DevOps
Number of deployments implementation, it means that Continuous Integration, Continuous

environment can be employed in
development to spot performance problems
before they hit production.

Delivery, and deployments favour the overall delivery to production.
If this number is comparatively high, it denotes that developers are

N f dail heck-
HRDer of dakly cole Chec taking advantage of Continuous Integration and the possibilities for

ins/Pushes code conflict and staleness are reduced.
° TWO k| N d S Of mon |to r‘i ng are req u | r‘ed fo r A higher number is testimonial of the fact that there is higher
. Number of releases in @ month confidence in delivering changes to production and that DevOps is
DevO pS . helping to do that.
° Server monitori ng. This number should be lower than pre-DevOps implementation

numbers. However, if this number considerable, it refl h
Number of defects/bugsissues umbers. However, if this number considerable, it reflects that

* Application performance monitoring.

testing is not comprehensive within Continuous Integration and the

.) procction Continuous Delivery pipeline and needs to be further strengthened.
* Measuring DevO ps: Quality of Delivery is also low.
. Number of failures in This is also known as broken build. This indicates that developers
¢ Monltorlng, aUdIt and COIIECtlon Of metrics Continuous integration are writing improper code.
should be developed and deployed, Number of failures in Release If the number is high, it indicates that code is not meeting feature
Pipeline/Continuous requirements. Also, automation of environment provisioning might

* Regular baselining of data for effective Deployment have issues.
compa rison. If this number is less, it indicates that unit tests do not cover all

. . Code Coverage percentage scenarios comprehensively. It could also mean that there are code
* MetFICS ShOUId be Ca p‘.tured over a, perIOd smells with higher cyclomatic complexity.
and then compared with the baseline.

24

The DevOps tool chain

S

~

\ |
N, 4
“Jenkins./

S

OPERATE

. ANSIBLE
~, ’

\~~—-—"

4
’

S———

1
*\ New Relic. /
’

s -
~~___c,—- -~

Va N,
II \\
! \
1o Sensu;

N\

l,’ “|\\ ’/

[Py ———

Nagios]

N /
~o R4

edureka!

25

Where is my infrastructure? @

* We have seen that, through a microservice architecture and some
related processes and tools such as DevOps, we are able to write
applications that are (or at least should be) scalable, reliable and
maintainable.

* However, when it comes to deploying these applications in the
Cloud, we naturally need to find and configure the resources that are
needed by the application.

* For example, we need to provision the VMs where we can run our
containers / microservices, exactly like we did when we created the
first VMs on Cloud @CNAF.

* In other words, we need to explicitly create our infrastructure.

Container orchestration LUl

* In a previous session, we explored how containers help us to easily create
applications that are — as the name says — self-contained.

* On the other hand, we just saw that microservice architectures are based on
the composition of many independent (but communicating) services.

* Let’s combine these two points: containers can greatly help with the creation
of a microservice architecture. Actually, through docker-compose we already
learned how to create multiple containers linked together in Application
Stacks.

* However, docker-compose is limited to the composition of containers within
a single host. On the other hand, in general microservices are deployed across
multiple hosts.

* We therefore need to explore how to effectively orchestrate many containers
across distributed hosts. This is what we call container orchestration.

Docker Swarm (1) @

« Docker Swarm is the traditional way of orchestrating containers with
Docker. Compared to other methods we’ll see later, it is relatively easy
to use. Its main features are:

e Cluster management integrated with Docker Engine: no other software than
docker is needed.

» Decentralized design: this means that any node in a Docker Swarm can
assume any role at runtime.

e Scaling: the Swarm manager can automatically scale up and down services,
adding or removing tasks.

* Desired state reconciliation: if something happens to a Swarm cluster (e.g.
some containers crash), the Swarm manager will try to reconcile the state of
the cluster to its desired state (e.g. bringing up some more containers).

Docker Swarm (2) @

* Docker Swarm features, continued:

* Multi-host networking: the Swarm manager can handle an overlay network
spanning your services.

» Service discovery: there is a DNS server embedded in each Swarm. The
Swarm manager discovers services and assigns to each of them a unique DNS
name.

* Load balancing: you can specify how to distribute services among nodes.

» Secure by default: the communication among all nodes in a Swarm cluster is
protected by the cryptographic protocol called TLS (Transport Layer Security).

* Rolling updates: if anything goes wrong, you can roll-back a task to a previous
version of the service.

Hands-on with Docker Swarm @

* We'll Iolfsely follow https://docs.docker.com/engine/swarm/swarm-
tutorial/.

* For this hands-on, we need three VMs with Docker installed.

* One of these machines will be the manager of the Swarm cluster, the other two will
be called workers.

* We’ll use our devopsXX; in order to have 3 VMs, you needto-ereate- 2 new VMs; do
it now and call devopsXX “manager”

* Important: make sure that Docker is installed on all three VMs.

* We also need the IP addresses of the 3 machines involved, as well as the
following open ports for all of them, to allow communication among the
nodes (once you have your 3 VMs, properly set up the security groups):

* TCP port 2377 for cluster management communications.
* TCP and UDP port 7946 for communication among nodes.
* UDP port 4789 for overlay network traffic.

https://docs.docker.com/engine/swarm/swarm-tutorial/

Docker Swarm hands-on: our use case L

* To make things simple and quick, we’ll use a Docker Hub container
called “nginx”

* Nginx is a commonly used web server (see https://nginx.org/en/), like
Apache.

* We’ll create a Swarm service based on the nginx container and
deploy it in 5 instances, distributed across 2 VMs (swarm-wnX1 and
swarm-wnXz2).

* All these containers will not be directly accessible from the Internet. So, in the
end we’ll have 5 web servers.

* We’ll then deploy a load balancer on a 39 VM (the manager). The

load balancer will be reachable via a public IP address.

 When people hit this IP address, the load balancer will route our requests to
one of the nginx containers on swarm-wnX1 or swarm-wnX2.

https://nginx.org/en/

Docker Swarm: our architecture LUl

HTTP query
e —— GE Remote user
-~
7’

Public network 7

Load Balancer
. hginx Swarm cluster

/ Swarm Manager

Internal network

/
/
/
/
/ \

nginx nginx

swarm\-wnlj

Create a Swarm cluster T

* Login to the VM that should become the “Swarm manager” (the one you
called “manager”=devopsX).

* On the manager, issue the command
* docker swarm init --advertise-addr <MANAGER-PRIVATE-IP>

* This initializes a Swarm cluster and tells the workers about the IP address of the Swarm
manager. Note that this should be the manager’s private IP address, not the public one.

* Docker answers confirming that the current node is now manager and gives us the
command to add a worker to the Swarm cluster. Note it down.
* Now log in to swarm-wnX1 and swarm-wnX2, and on each of them issue the
command reported above by the manager
* It should be something like docker swarm join -token <token> <ip addr>:2377

* On the manager, issue the command docker node 1s to view the current
state of the Swarm cluster.

* It should show the manager and the two workers, all in the “active” state. There are no
running services in the cluster yet.

Create a Swarm service LUl

* We will now create a “service”. We have to define:
* How to name it — we’ll call it “web_swarm”.
* The container image it is based on (nginx, found on DockerHub).
* The port that can be used to contact the service.
 How many replicas of the service we want to deploy.

* This is the command we have to issue on the manager:

docker service create --replicas 3 -p 8082:80 --name web swarm nginx
* With this command, we create 3 docker containers, each one based on the nginx
image.

* These containers will be automatically distributed across our Swarm cluster. Each

container will expose port 80, which will be mapped to port 8082 on a VM host
(swarm-wn1 or swarm-wn2).

Check the status of the Swarm service @

* The status of our service can be checked on the manager with
docker service 1s

* |t will take some time before the service is shown as replicated 3 times, as
requested — just repeat the command until it shows 3/3 replicas.

* In order to see where (i.e. on which nodes) the service was
distributed by Swarm, issue this command on the manager:

docker service ps web swarm

* Once you have the 3 web swarm replicas running, log in to either
swarm-wnl or swarm-wn2 and issue this command there:

docker ps
* You should see that one or more nginx containers are running on the node.

How to access the web swarmservice CNN

 Remember that so far, the nodes of the Swarm cluster are only
reachable via their private IP addresses. Therefore, we cannot directly
use a browser to reach the web servers.

* But internally they can be reached (look back at the architectural
diagram). So, log in e.g. to the manager and issue the command

curl http://<private ip address of VM1>:8082/ (or VM?2)
* You should get an answer. Or not?

* Note that you will get an answer even if there is no web swarm container
running on VM1 (or VM2). How can you prove that?

Scaling up or down and draining @

 When we created our service, we specified --replicas 3. Ifyou
want to scale the service to another number of replicas, just issue
this command on the manager:

docker service scale web_swarm:7

* What is happening? On the manager, check with
docker service 1s

docker service ps web swarm

* Now suppose that you want to remove the service web swarm from
e.g. swarm-wn2 (because, for example, you want to shut it down for

any reason). This is called draining a node. Try this:
docker node update --availability drain <VM2>

* What is happening? Check with docker service ps web swarm.

Load balancing the web servers @

* We now want to create a load balancer on the manager node.

* Its purpose is to expose a public IP address which will be reachable from the
Internet and balance the queries to that IP address to the web swarm services
that are deployed in the Swarm cluster.

* The same nginx container that we previously used to create web
servers can also be configured to act as load balancer. We just need to
have a suitable nginx configuration file.

* In this configuration file, we need to list the IP address (the private IP
addresses, in our use case!) of all the hosts participating to the Swarm cluster.

* That is, the private IP addresses of the manager, swarm-wn1l and swarm-wn2.

Create and run the load balancer @

* On the manager, create the following Dockerfile in the same directory
where you have put nginx.conf:

FROM nginx
COPY nginx.conf /etc/nginx/nginx.conf

* \We can now build and then run our container with the load balancer

configuration with commands we already know:

docker build -t load balancer .
docker run -p 8080:80 -d load balancer

* If we now open http://<manager public ip>:8080/, we should get
a web page displayed. Try it out now.
* From which web swarm node is the answer coming? In the nginx.conf file we

told the web server to log some information. Look at this information with the

following command:
docker logs -f <load balancer container>

The nginx configuration for load INFN
balancing

* On the manager, create this file and call it nginx.conf:

worker processes 1;
events { worker connections 1024; }
http {

sendfile on;

upstream swarm cluster {
server <manager 1p addr>:8082;
server <VMl 1ip addr>:8082;
server <VM2 ip addr>:8082;

| B

server {
listen 80;
location / {
proxy pass http://swarm cluster;

}
log format upstreamlog '[Stime local] from Sremote addr to Supstream addr';
access log /var/log/nginx/access.log upstreamlog;

}

40

A few notes @

* Docker Swarm services are persistent. Try to shut down all 3 nodes
and then start only the manager. You will see that the manager brings
up all replicas automatically on itself.

* The load balancer configuration, on the other hand, is a stand-alone container
and does not automatically restart.

* Remove a Swarm service with:

docker service rm <service name>

* An interesting point is to combine Docker Swarm with custom Docker
images or with Docker Compose. This is left as an exercise.

Docker Swarm: our architecture LUl

HTTP query
e —— GE Remote user
-~
7’

Public network 7

Load Balancer
. hginx Swarm cluster

/ Swarm Manager

Internal network

/
/
/
/
/ \

nginx nginx

swarm-wn 1j

Kubernetes @

* Kubernetes is an open-source platform that
coordinates a highly available cluster of
computers that are connected to work as a single
unit. It is backed by Google and RedHat.

' * Applications need to be containerized.
s Kubernetes automates the distribution and

kubernetes

https://kubernetes.io

_— scheduling of application containers across a

oo ClUSTEr in a fairly efficient way.
@ * A Kubernetes cluster can be deployed on either

physical or virtual machines.

Kubernetes cluster

43

https://github.com/kubernetes/kubernetes
https://kubernetes.io/

INEN
Kubernetes cluster resources C

* A Kubernetes cluster consists of two types
of resources:
* The Master coordinates the cluster
* Nodes are the workers that run applications

* The Master is responsible for managing
the cluster

e coordinates all activities in your cluster, such as
scheduling applications, maintaining
applications' desired state, scaling applications,
and rolling out new updates.

* Anode is a VM or a physical computer that
serves as a worker machine in a
Kubernetes cluster

Node

Master

node processes

Kubernetes cluster

44

Kubernetes Master/Nodes processes (_INFN

* The Kubernetes Master is a collection of three processes that run on a single
node in your cluster, which is designated as the master node. These processes
are:

* kube-apiserver
* kube-controller-manager
* kube-scheduler

* Each individual Node in your cluster runs two processes:
e kubelet, which communicates with the Kubernetes Master.
* kube-proxy, a network proxy which reflects Kubernetes networking services on each node.

* Moreover, each Node runs a container runtime (like Docker) responsible for
pulling the container image from a registry, unpacking the container, and running
the application.

* A Kubernetes cluster that handles production traffic should have a minimum of
three nodes.

45

https://kubernetes.io/docs/admin/kube-apiserver/
https://kubernetes.io/docs/admin/kube-controller-manager/
https://kubernetes.io/docs/admin/kube-scheduler/
https://kubernetes.io/docs/admin/kubelet/
https://kubernetes.io/docs/admin/kube-proxy/

Kubernetes Objects (NN

* Kubernetes contains a number of abstractions that represent the
state of your system: deployed containerized applications and

workloads, their associated network and disk resources, and other
information about what your cluster is doing.

* These abstractions are represented by objects in the Kubernetes API.

* The basic Kubernetes objects include:
* Volume
* Namespace
* Deployment
* Pod
* Service

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/services-networking/service/

Kubernetes volume INFN

* As we have already seen, on-disk files within a container are
ephemeral. This presents some problems for non-trivial applications
when running in containers.

 When a Container crashes, kubelet will restart it, but the internal container
files will be lost - the Container starts with a clean state.

 When running Containers together in a Pod it is often necessary to share files
between those Containers.

* The Kubernetes Volume abstraction solves both of these problems.

Kubernetes Namespaces L

* Kubernetes supports multiple virtual clusters backed by the same
physical cluster.

* These virtual clusters are called namespaces.

Kubernetes Deployment INFN

* Once you have a running Kubernetes cluster, you can deploy
your containerized applications on top of it. To do so, you
create a Kubernetes Deployment configuration.

* The Deployment tells Kubernetes how to create and update
instances of your apBIication. Once you've created a
Deployment, the Kubernetes master schedules application
instances onto individual Nodes in the cluster.

* Once the application instances are created, a Kubernetes
Deployment Controller continuously monitors those
instances. If the Node hosting an instance goes down or is Master
deleted, the Deployment controller replaces it. This node processes

rovides a self-healing mechanism to address machine
ailure or maintenance.

* In a pre-orchestration world, installation scripts would often
be used to start apﬁlications, but they did not allow
recovery from machine failure. By both creating your Kubemetes Cluster
application instances and keeping them running across
odes, Kubernetes DepIoYments provide a fundamentally
different approach to applications.

Node

containerized app

Deployment

Kubernetes Pod

A Pod is the basic building block of Kubernetes. It
represents a running process on your cluster.

Nod

A Pod encapsulates an application container, storage 5:,‘_‘ o /,:i' »
resources, a unigue network IP, and options that I,
govern how the container(s) should run. >

volume

containerized app

Pods that run a single container. The “one-container-
per-Pod” model is the most common Kubernetes use
case; in this case, you can think of a Pod as a wrapper
around a single container, and Kubernetes manages
the Pods rather than the containers directly.

node processes

Pods that run multiple containers that need to work

together. A Pod might encapsulate an application Pod

composed of multiple co-located containers that are , T S N
tightly coupled and need to share resources. The Pod o~ & ™\ i @ N\ ,/ W —
wraps these containers and storage resources @) \m ®) \ e®) | A B
together as a single manageable entity. - - -

Pod1 Pod 2 Pod 3 Pod 4 50

Kubernetes Services

A Kubernetes Service is an abstraction which
defines a logical set of Pods and a policy by
which to access it.

* Although each Pod has a unique IP address,
those IPs are not exposed outside the cluster
without a Service. Services allow your
applications to receive traffic.

 Services match a set of Pods using labels and
selectors, a grouping primitive that allows
logical operation on objects in Kubernetes.
Labels are key/value pairs attached to objects
and can be used in any number of ways:

* Designate objects for development, test, and
production

* Embed version tags
 Classify an object using tags

s:app=A

Label Selector

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels

Kubernetes architecture INFN

Kubernetes Master

D Cloud connector

kube-controller-
manager

Control plane

N

Data plane

kube-apiserver

\ \
kubelet kubelet
' kube-proxy ' | kube-proxy ||
|
|
|
I 0 (o o)
|
|
|

kube-proxy

kube-scheduler

P o 0= 0

Kubernetes Minions

Kubernetes hands-on @a\'

 https://baltig.infn.it/corsi formazione ccr/corso bd 2019/tree/ma
ster/docker
* Leveraging a K8S cluster already created on https://rancher.cloud.cnaf.infn.it/

* In addition you can use Minikube - to deploy a Kubernetes cluster on
your own on your laptop

* Minikube is a lightweight Kubernetes implementation that creates a

VM on your local machine and deploys a simple cluster containing
only one node. See https://github.com/kubernetes/minikube for
details.

53

https://baltig.infn.it/corsi_formazione_ccr/corso_bd_2019/tree/master/docker
https://rancher.cloud.cnaf.infn.it/
https://github.com/kubernetes/minikube

Kubernetes as a Service LUl

* Deploying and managing a Kubernetes cluster is generally not trivial (that’s
why Minikube was introduced), since it requires effort and several skills.

* |t would be nice to automatize this part as well and focus just on deploying
our containers on a Kubernetes cluster that somebody else instantiates for
us.

* Many Cloud providers give us just that: a Kubernetes as a Service.

* Amazon provides what they call the “Elastic Container Service for Kubernetes”, or
EKS for short. Other providers have similar offerings.

* We have seen that Kubernetes cluster consist of a control plane, where the masters
are running, and of a data plane, where we have our worker nodes and containers.
EKS provides a managed control plane, deployed in a fully highly available setup.
Since this a service managed by AWS, we don’t need to care about updates to the
Kubernetes software itself.

Apache Mesos

* Apache Mesos
(http://mesos.apache.org) is a
software layer over which
diverse frameworks can run.

* In some way, Mesos is the
opposite of virtualization:
while virtualization divides a
single physical resource into
many virtual ones, Mesos
allows you to share a large
cluster of machines between
different frameworks.

Hadoop
scheduler

MPI

scheduler

_

-
-
-
-
-
-
-
-
-
-

Mesos i
master :

Standby
master

Mesos Agent Mesos Agent Mesos Agent

Hadoop MPI Hadoop|| MPI
executor executor executor||executor

task | task | task task

ZooKeeper
quorum

Standby i
master

55

http://mesos.apache.org/

1. Agent 1 reports to the master that it has 4
C§Us and 4 GB of memory free. The master HOW MeSOS WO rkS INFN

then invokes the allocation policy module,
which tells it that framework 1 should be
offered all available resources.

2. The master sends a resource offer describing Framework 1 Framework 2
what is available on agent 1 to framework 1. Job 1 | Job 2 Job1 | Job 2
3. The framework’s scheduler replies to the FW Scheduler FW Scheduler
master with information about two tasks to '
run on the agent, using <2 CPUs, 1 GB RAM> (s, 4cpu, 4gb, > (2 Shiie B e g]
fﬂr the firsglc tasll<<, and <1 CPUs, 2 GB RAM> for . R
the second task. Allocation Mesos
4. Finally, the master sends the tasks to the module master
agent, which allocates appropriate resources L -
to the framework’s executor, which in turn ((<s1, 4cpu, 4gb, ... > (1 zm tas::; fcpu, ;93 e]
launches the two tasks (depicted with dotted- el
line borders in the figure). Because 1 CPU and g T
1 GB of RAM are still unallocated, the B a— —
allocation module may now offer them to oo - 1
framework 2. Lilast L dasK) 2asK Jl_Jlask

* From http://mesos.apache.org/documentation/latest/architecture/

56

http://mesos.apache.org/documentation/latest/architecture/

Mesos fine-grained sharing @

Coarse-Grained Sharing (HPC): Fine-Grained Sharing (Mesos):
h‘_l:n‘_l:n‘ Fw 3 \ Fw. 2 Fw. 1
Framework 1 Fw. 1 Fw 2] Fw 2 J

S . .

= I=” ISY | —‘

. : Fw. 2 Fw.1 || Fw.3 \

| Framework 2 | FW 3 ; FW 3 [FW 5

h‘ h‘ h‘ Fw. 2 Fw. 3 Fw. 2
Framework 3 | ' Fw 1 Fw 2 Fw 3 \

| RN | N | 4

57

Docker Swarm, Kubernetes, Mesos: INEN
which one to choose? (1)

* We have seen (with different degrees of in-depth analysis) the three
current major solutions for container or resource orchestration,
which is a topic that sooner or later normally comes up with anything
but the simplest big data problems.

* Some general considerations on when to use what:

* Docker Swarm for smaller projects and for testing purposes. Easy to use if you
are already familiar with Docker.

e For larger, enterprise-like solutions, Kubernetes. It’s also “the Google way of
doing it”. But mind the rather steep learning curve.

* Mesos for very large clusters and for workflow-based solutions. It can be fairly
complex, so it might need a sizeable support team.

cer Swarm, Kubernetes, Mesos:
Docker Swarm, Kubernetes, Mesos: NEN

which one to choose? (2)
Choose Your Own Adventure!

You Big
. Data Cluster Cluster
badass? Shop? > 10007 > 100007
Yes No Yes
No Yes No Yes
Love Big
Legacy docker Cluster T .,
Apps? No oL > 2007 Team?
Yes
No
Yes Yes No 5 o

AVAVA
AVAYATA
VAYAAY

VAVAY

MESQOS

e From https://www.bogotobogo.com/DevOps/DevOps-Docker-Swarm-vs-
Kubernetes-vs-Apache-Mesos.php

59

https://www.bogotobogo.com/DevOps/DevOps-Docker-Swarm-vs-Kubernetes-vs-Apache-Mesos.php

Infrastructure as Code (1) @

* With the idea of Infrastructure as Code (l1aC), instead of manually
creating the infrastructure we need for our applications (e.g. virtual
machines, disk volumes, installations, configurations), we define what
we want through machine-readable definition files.

* |laCis based on the realization that “Complexity kills Productivity”: it
therefore aims to simplify how you can realize complex infrastructures and
set-ups.

* There are many tools that allow us to combine automation with
virtualization. With 1aC, all the specifications for the infrastructure we
are generating should be explicitly written into configuration files.

Infrastructure as Code (2) @

* Some of the most popular tools for |IaC are Puppet
(https://puppet.com), Ansible (https://www.ansible.com), Terraform
(https://www.terraform.io) and Chef (https://www.chef.io/chef/).
Docker itself provides some form of 1aC.

* While we won’t explore any of these in detail in this course, it is
important to highlight that it is fundamental that whatever you do
with your code and data should be reproducible and manageable.

* You are therefore encouraged to use automated installation and
configuration tools in your work, also because they enable you to
fully profit from the DevOps paradigm we have already seen
(Continuous Integration, Continuous Delivery, Deployment
Orchestration).

61

https://puppet.com/
https://www.ansible.com/
https://www.terraform.io/
https://www.chef.io/chef/

Serverless technologies Lo

* With serverless technologies, we perform another 1+ SaaS
step toward automating and facilitating the use of e
Cloud resources. - U Paas ra .o
* Remember that - what eventually matters are the PlaaS . o
applications, not the infrastructure. i Al

* Recall what happens with traditional Cloud applications, of which we have
already seen several examples:

* We need to provision and manage the resources (e.g. VM1, VM2, the disks, the S3
buckets, etc.) for our applications.

* We are charged if we keep the resources up, even if they are doing nothing.
* We are responsible to apply all the updates and security patches to our servers.

What is serverless, or FaaS INFN

* With serverless, a Cloud provider is responsible for executing a piece of
code (written by you) by dynamically allocating the resources needed by
the code.

* You are only charged for the resources used to run the code and only when
the code runs.

* This code is typically a function. Thus, serverless computing is also called
Functions as a Services, or Faas.

* The running of these functions can be triggered depending on some
conditions, such as for example database events, queueing services, file
uploads, scheduled events, various alerts, etc.

* Your applications should therefore be structured around a set of stateless
functions = this is consistent with the idea of microservices we have
already seen.

AWS Lambda (iNFR

* In the Amazon world, serverless computing is called AWS Lambda.
* This is how it works (picture from Amazon):

I~ AWS Lambda A\ ‘

: Lambda runs ode onl)
Upload your code to AWS Set up your code to trigger from when trigg;:red)f%{:i—rfg o?rly tr):e Just pay for the compute

Lambda or write che in othe(AWS services, HTTP compute resources needed time you use
Lambda's code editor endpoints, or in-app activity

[© 9) 3
A simple AWS Lambda example: | ©] Amazon 3 = AWS Lambda o=
. Photo is uploaded Lambda is Lambda runs image N
Photograph is taken to an S3 Bucket triggered resizing code Photo is resized into web,

mobile, and tablet sizes

How an AWS Lambda looks like LU

* We won’t do a direct hands-on with Lambda.

* However, this how a sample Python function would look like in the
AWS Lambda Console:
= hello-world-python | umitatore | | qualificatori v || operazioni v | v

Codice della funzione informazioni

Tipo di voce del codice Runtime Gestore Informazioni
Modifica codice inserito v Python 3.7 v lambda_function.lambda_handler
Fie Edit Find View Go Tools Window oo o 3
g v hello-world-python £+ B lambda_function
(3
§ ¢» | lambda_function.py 1 Import json
5 2
u 3 print('Loading function')
4
5
© def lambda_handler(event, context):
7 #print("Received event: " + json.dumps(event, indent=2))
8 print("valuel = " + event['keyl'])
9 print("valuez = " + event['key2'])
10 print("value3 = " + event['key3'])
11 return event['keyl'] # Echo back the first key value
12 #raise Exception('Something went wrong')
13

65

Configura evento di test X

Una funzione pud avere fino a 10 eventi di test. Gli eventi vengono mantenuti, per cui puoi passare a un altro computer o

[esting an AWS
browser Web ed eseguire un test della tua funzione con gli stessi eventi.
L]
Lambda function P

Modello evento

Hello World v

* My Python function just replies

to some events, printing out

their content. | am testing it 2" s o, w2 corserr,
creating a test event with some B s values”
dummy values, as shown in the

picture on the right.

Annulla Crea

Test results

* When | now actually run the test, this is what is shown:

hello-world-python
Tipo di voce del codice

Modifica codice inserito

‘ Limitatore H Qualificatori v || Operazioni ¥ | HelloBDP2Event

’

Runtime

v Python 3.7

Gestore Informazioni

lambda_function.lambda_handler

~ File Edit Find View Go

v hello-world-python £~
<> | lambda_function.py

Environment

Tools Window
B8 lambda_function *
1 fimport json
2
3 print('Loading function')
4
5
6 def lambda_handler(event, context):
7 #print("Received event: " + json.dumps(event, indent=2))
8 print("valuel = " + event['keyl'])
9 print("valuez = " + event['key2'])
10 print("value3 = " + event['key3'])
11 return event['keyl'] # Echo back the first key value
12 #raise Exception('Something went wrong')
13
B Execution Result
v Execution results
Response:
"Hello, BDPZ Course!"

Request ID:
"cccec418-2¢56-401-9de9-3fF2605c255¢e"

Function Logs:
START RequestId: ccccc418-2c56-4f01-9de9-3ff2605c255e Version: $LATEST

valuel
value2
value3

= Hello, BDPZ Course!
= valuez
= value3

END RequestId: ccccc418-2c56-4f01-9de9-3ff2605c255¢e

REPORT

RequestId: ccccc418-2c¢56-4f@1-9de9-3ff2605c255e Duration: 9.80 ms

Billed Duration: 100 ms

1:1 Python Spaces:4 ¥

Status: Succeeded | Max Memory Used: 53 MB | Time: 9.80 ms

Memory Size: 128 MB Max Memory Used: 53 MB

INFN

67

Why is this useful? @

* Because | could attach a Lambda function to any event that interests me.

* For example, instead of writing a dummy function such as the above, | could have
ut in the code that transforms a picture from color to grayscale, using e.g. our well-
NOWN single.py pProgram.

* | could have then connected my Lambda function to an S3 bucket, so that
any time a new picture is uploaded to the bucket, my function runs on
some (dynamically provisioned) AWS resource, and automatically
generates a grayscale version of the image.

* Note that in this case | do not have to explicitly start up any VMs nor containers!

* You could connect a Lambda e.g. to S3, to Alexa, to changes in a DB, to something
being published in a queue, to an loT device, to a MapReduce workflow, etc.

* Imagine for instance to connect a Lambda function to a DNA sequencer:
the function could dynamically process the received data and do something
(which could also be rather com\olex) with it, as data is being produced, all
without you requiring to explicitly instantiate, run or monitor anything!

Template-based orchestration @

* We have seen Function as a Service as a way of abstracting from
resource descriptions in Cloud computing. This is handy and useful,
but sometimes applications need to have a higher-level description
than a “function”, because they have several components.

* There are several templating mechanisms that can be used to
describe and provision resources needed by an application in a Cloud
infrastructure.

* In some sense, this extends what we have seen e.g. with Docker
Swarm to cover any requirements your applications might have and

automatize your deployments in the Cloud.

AWS CloudFormation LU

* The Amazon way of defining a complete topology for an application is
through the CloudFormation language.

cCr e
C i
BEE S

? fgm
©0000 ::ID%I

N

............... 1 g

Code your infrastructure Use AWS CloudFormation AWS CloudFormation
from scratch with the Check out your template via the browser console, provisions and configures
Clqudformat/on template language, code locally, or upload it command line tools or APIs the stacks and resources
in either YAML or JSON fqrmat, into an S3 bucket to create a stack based you specified on your
or start from many available on your template code template

sample templates

70

TOSCA (iNFR

 AWS CloudFormation is Amazon-specific. As such, it
can Only be used with AWS. [Topology Model I%)rchestrated Behaviours (Plans)]

* TOSCA (Topology and Orchestration Specification for

Cloud Applications) is on the other hand a public
standard:

* Itis an OASIS (https://www.oasis-open.org/) standard
language to describe a topology of cloud-based web
services, their components, relationships, and the
processes that manage them

* |t standardizes the language to describe:

* The structure of an IT Service (its topology model) . Relationship

* How to orchestrate operational behavior (plans such as
build, deploy, patch, shutdown, etc.) .

* A declarative model that spans applications, virtual and
physical infrastructures.

71

https://www.oasis-open.org/org

Vision

— Task of a plan refers to interface of a topology node

N ips .
\ — Topology node specifies all interfaces offered to manage
N~ Interface is bound to a concrete implementation

oumjto...

— Implementation already available at providers side, or
- — Implementation is copied from somewhere, or

“ _~ — Astandardized Cloud Interface (laas, PaaS, Saa$) is used,
~

-

\
\3. Browse
__-"and Select

-

¥

Service .
Catalog

A
\

"™\2. Publish

S

Service Template

;' 5. Deploy

anywhere
E
s G|

4.Tools to service Template
optimize,
report, etc.

1. Model Once

73

HEAT vs TOSCA

0S::Nova::Server
0S::Neutron::Network

0S::Ceilometer::Alarm

Heat provides a
mechanism for
orchestrating
OpenStack
resources through
the use of modular
templates.

INFN

TOSCA defines the
interoperable description
of applications; including
their components,
relationships,
dependencies,
requirements, and
capabilities....

(oASIS]

Comparing TOSCA & HEAT @

= Heat — Automatethe = TOSCA - Automation

configuration and of the application
setup of OpenStack deployment and
resources management lifecycle

» Specific to OpenStack = Portable

i'> Merging Concepts <

What can you do with a TOSCA-driven INFN
solution?

* TOSCA and other template-driven orchestration mechanisms allow us
to realize service composition, i.e. to combine different services to
implement complex topologies.

* An example of service composition developed within INFN is DODAS
(Dynamic On-Demand Analysis Service), where we facilitate the
deployment of relatively complex set-ups on any cloud provider with
almost zero effort.

* DODAS currently provides support to generate:
 An HTCondor-based batch system as a Service
* A Big Data platform for Machine Learning as a Service
* Plus extensions of these two integrating community-specific services.

Why is this useful

* Regardless of the details of DODAS, what is
important is often to have solutions in science that
allow:

e Creation and management of on-demand systems (batch

or Spark, for example) for data processing.

* But these should not be tied to a specific cloud provider (e.g.
Amazon).

e Exploitation of opportunistic computing.

* Intended as resources not necessarily or permanently dedicated
to a specific experiment and/or activity.

 Elastic extension of existing facilities.
* To absorb peaks of resource usage.

* To accommodate workflows with special requirements.

78

The DODAS architectural pillars @

* Everything is cloud and experiment agnostic as much as possible.

* There are three major handles that make service composition in
DODAS highly customizable:

docker ANSIBLE
To support user To automate configuration To define input
tailored and deployment of parameters and customize
computing custom services and/or the workflow execution

environments dependencies

79

Application management

Private Cloud _ : : Public Cloud
m $% Master '. I ‘m Master l m
M — 1 =

Slave & v ‘ ‘ J :
(0 3 = @] Slave g’b\ Slave o Slave |
‘u /F a >
= Executor Executor @ N\ e Executor .
N s
Appiication | e

* In DODAS, we use Mesos for resource management an
Marathon, a Mesos framework to launch long-running
applications, for container orchestration (Kubernetes is
also supported).

e Container orchestrator is the layer responsible for the execution
of end user services.

 Any framework and/or software application can run on a
DODAS-provided cluster.

* DODAS provides by default two set of recipes, to create HTCondor &
Spark clusters.

docker

To support user
tailored
computing
environments

80

DODAS roles LU

:
|
|

DODAS Manager w)

(. §

J\ authny 1
A - :
I

Home IdP> 74

Care only about software
applications

Interact with DODAS PaaS
services

Value Visibility to End Users

| Architects

81
Davide Salomoni, Daniele Spiga

The Big Picture

DODAS

User] >
/‘l\

A AuthN
R
T~
Homell @/ m— T
< o
\\ rd o - N
O /// ~~‘~\ N Q;P’Q/
S -
& >id
N R
7 ~<
V4

/ provsioning, SetuP Configuration Provsioning, siup, Configuration \\\
] | 9 .
& l,, (/ / \\
: l \ \‘
1 - \l -
Private Cloud I / | Public Cloud
T Marathon ‘@ ‘ Marathon ’
m Master Master I
V. — I I -
(0] Slave |0 - R 7 -
”@ ‘‘‘‘‘‘‘‘‘‘ N @ Slave |0 ' Slave |0 Slave
) < i 5
Executor M | Executor Executor

Executor }
ftwar: ftwar
=
\

o—

M

Q9
oZ

_’\

\\/\/

The DODAS Monitoring System

Cluster universe

- .
[Virtual Machine1

(M/ " System metrics

Docker metrics

= —— ~

module D
P

Metricbeat

q _ \\
Running module -~ . .
dockers < . P Kibana
\ /
" 4
B PE—— ™\ G
£\ . —— > ~ - \ / rafana
f . \ / —
Virtual Machine2 (f System metrics / -
QT_\ modu|e Metricbeat lome cluster view -
-
P S -
/”737(';7%/77.7}!7 Ra Cu Selected (1)
Running — ocker metric: o
— Al
dockers —_ AT?dule{ R ‘
\ |
\ f

‘T3_IT_Opportunistic_hnsci

WNs CPU usage %

(0400 ORIV IO

[
I 3/1420:00 3/150000 3150400 3/150800 3/151200 3/1516:00 3/152000 3160000 3/160400 3/160800 3/161200 3/1616:00

Current number of VMs

CPU Lsage

% elastic

WNs memory usage %

Memory usage

0 3150000 3/150400 3/1508:00 3/151200 3/1516:00 3/152000 3/1600:00 3/160400 3/160800 3/161200 3/1616:00

WNs network in

Ml

250k8ps
2001@ps
150k8ps
100 k8ps

S0kBps

s
[\

N M
[A4

00 3/16 1200 3/16 16:00

AL

CPU load1 nomalized

3150000

2000%

g 1500%

T8 e e e ettt pvetmeere

Memory usage

s00%

ox
3150000

1500%
100.0%
s00%

ox
3150000

40MBps
30MBps
20MBps
10MBps
[p—
3150000

INFN

ys Refresheverysm

Load Smin/ # cores

37150800 3151600 3160000 3160800 161600

squids CPU usage %

|

3150800 3151600 3/1600:00 3/1608:00 3161600

squids memory usage %

37150800 3151600 3/1600:00 3/1608:00 3161600

Squids networkin

3715 08:00 151600 3716 00:00 3716 0800 3/161600

83

Current Model

Batch System as a Service: the AMS use case

2\
N .
Home IdP

IAM

Nmit Jobs

Batch System

DODAS

CERN

Any Cloud

Data Cache/
Local Storage

-

Collector

_
—_—

j e
_4HICond Batch Svsten{ /)&

Negotiator Data Cache

Startd

Schedd

Remote@torage

= Engan Yo
|yl File system

INFN-CNAF o
— el

)

=

)
>
o

)
S
§s
<<
7))
<
a
o
o

84

INFN

HTCondor Pool Extension: the CMS use INEN
case

v' Completely transparent to CMS physicists

CMS Physicists _ v _ ‘ ‘

e >3 Seamlessly integrating the global infrastructure
Glidein Factory, O:
WMS Pool C §

oy, T
<= VO Infrastructure g D O DAS
Frontend E ephemeral site Openid Connect ;
4// : J Auto-Register ang X.509

HTCondor .| HTCondor GET jobs

Scheduler Central Manager

N/]
HTCondor glidein HTCondor bootstrap
Startd Startd
glidein
Cloud Site

D|str|buted
Storage

\/
—>
N
4l HTCondor %

Slav

<
(X
CVMFS 55

Load
Balancer

o

85

Elastic use of resources L

| - -Systems-

#cmsRun processes ¥

20K

1.5K
1.0K

500

6f27 12.00 6/28 00:00 6/2812:00 @ 6 7/212:00 7/300:00 7/312:00 7/400:00

- . e - Elasticity and self-healing H/ LIX
Z o (N7 : P ' At l N - Stability over days/weeks (120k jobs) NdBUL/\
$ 25.00%.,_:,./:3_ i | N - Handling “special requirements” THESCIENCECLOUD
o om om om “ high memory jobs

86

A sample DODAS TOSCA template

DODAS Manager

To define input
parameters and customize
the workflow execution

ANSIBLE

To automate configuration
and deployment of
custom services and/or
dependencies

tosca_definitions_version tosca_simple_yaml_1_0

imports
= indigo_custom_types https //raw.githubusercontent.com/maricaantonacci/tosca-types/master/custom_types.yaml

description TOSCA example for specifying a Mesos Cluster
topology_template

inputs
iam_token
type string
default "aeyJraWQiOilyc2ExIiwiYWxnIj........ "

iam_client_id
type string
def. b339719-2ccd=

d0-2f5524f32ae2"

iam_client_secret
type string

default: "AOdFB5gshSFOQEB.......4cVfgV9sSDN/cDaTdNat_6_iZvz6j mugérB[hwtsOhDLfZR hyetqZYqMcrs"

cms_local_site
type string
default "T3_IT Opportunistic_Bari"

ms_stageoutsite
t tring
default: ™

cms_stageoutserver
type string
def. storm-fe-cms.cr.cnaf.infn.it™

cms_stageoutprefix
type string
default "srm://storm-fe-cms.cr.cnaf.infn.it:8444/srm/managerv2?SFN=

cms_stageoutsite_fallback
type string
default: "DUMMY"

_stageoutserver_fallback
type stri
default: "DUMMY"

cms_stageoutprefix_fallback
type string
default: "DUMMY"

type sEring
default: "X.Y.Z.K"

elasticsearch_secret
type string
default: "5zs.....

INF

mesos-master-server
type tosca.nodes.indigo.Compute
capabilities
endpoint
properties
network_name PUBLIC
dns_name mesosserverpublic
ports
mesos_port
protocol: tep
source 5050
marathon_port
protocol: tg
source 8

scalable

Hosts Configurations

os-slave-server
type tosca.nodes.indigo.Compute
/ capabilities
scalable
properties
count: 3
host
properties
num_cpus: 4
mem_size 8 GB
os
properties

mesos-1lb-server
type tosca.nodes.indigo.Compute
capabilities
endpoint
properties
network_name PUBLIC
dns_name mesoslb

—

scalable
properties
count: 1
host

properties
num_cpus: 1
mem_size 2 GB

os

properties

image ost //cloud.recas.ba.infn.it/303d8324-69a7-4372-be24-1d68703affd7

image ost //cloud.recas.ba.infn.it/303d8324-69a7-4372-be24-1d68703affd7

87

Not onIy HTCondor INFN
@i%‘ DODAS will be used to
%3 implement a smart cache
Mode! ~—Actual Implementation , decision service because it

allows to compose
automatically the blocks of
the toolchain.

Service
Container | Container | Container

Framework

-

>
f

Resource Manager

Cloud Infrastructure
[Openstack
b aws
2 Google cloud
/A Microsoft Azure

Auth o\

88

DODAS for Machine Learning as a Service @

* Analysis of “Data Cache” related metadata flow
* To improve caching layer management: Smart Cache End Users

DODAS p %\jﬁr\; e
ephemeral site (ﬁ@ﬁ@&%

1. Reading HDFS@CERN data
2. Data enrichment and reduction
with Spark jobs
e Storing of output data to HDFS
3. Analysis of structured data

Load
Balancer

SEEKE

Recap of Cloud Automation @

We covered some basic concepts about Cloud Automation.

After explaining what Cloud Automation is, we discussed the difference between
microservices and monoliths.

We then explored the DevOps principles, and discussed the “Continuous Approach”
(Continuous Integration, Development, Learning, etc.).

We then moved on to discuss container orchestration, starting with Docker Swarm. As
hands-on, we created a Swarm cluster load balancing multiple web servers,
distributed across multiple nodes.

After Swarm, we described Kubernetes and Mesos, and provided a comparison
between these three orchestration tools.

Simplification in Cloud Automation led us to consider Infrastructure as Code, followed
by the new paradigm of Serverless Technologies (or FaaS). We showed a simple Faa$S
example with AWS Lambda.

We finished our Cloud Automation journey considering two high-level languages for
complex template-based orchestration of resources: AWS Cloud Formation and
TOSCA, providing an example (DODAS) of service composition.

