
Introduction to Containers

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International license

Slides by Davide Salomoni – INFN-CNAF

Presenter Daniele Cesini – INFN-CNAF

Corso Nazionale CCR Big Data Analytics

Bologna 09-12/12/2019

Virtualization

• Informally, a VM is a “virtual copy
of a real machine”.

• But what is “Virtualization” in
general?
• It is the creation of a virtual

version of something: an Operating
System, a storage device, a network
resource: pretty much almost
anything can be made virtual.

• This is done through an abstraction,
that hides and simplifies the details
underneath.

Corso CNAF 09-12/12/2019 2

Going virtual

Corso CNAF 09-12/12/2019 3

Source: http://bit.ly/2IVk6e5

http://bit.ly/2IVk6e5

Virtualization with Linux KVM

• KVM is a kernel module for virtualization in Linux – (there are other
ways to handle virtualization in Linux that we won’t discuss).

Corso CNAF 09-12/12/2019 4

Source: https://red.ht/2IUxJdr

https://red.ht/2IUxJdr

Going beyond Virtual Machines

• Virtual Machines (VMs)
carry quite some
overhead with them →
introducing Docker
Containers

Corso CNAF 09-12/12/2019 5

Source: http://bit.ly/2IVk6e5

http://bit.ly/2IVk6e5

Containers are «lightweight VMs»

Corso CNAF 09-12/12/2019 6

Source: http://goo.gl/4jh8cX

http://goo.gl/4jh8cX

“Lightweight”, in practice

• Containers require less resources: they start faster and run faster
than VMs, and you can fit many more containers in a given hardware
than VMs.

• Very important: they provide enormous simplifications to software
development and deployment processes, because they allow to easily
encapsulate applications in a controlled and extensible way.

Corso CNAF 09-12/12/2019 7

Corso CNAF 09-12/12/2019 8

Corso CNAF 09-12/12/2019 9

Intermodal Shipping Container
Ecosystem

Corso CNAF 09-12/12/2019 10

Docker Containers

Corso CNAF 09-12/12/2019 11

Docker features

• Docker is an open source engine for the easy creation of lightweight,
portable, self-sufficient containers from any application.

• The same container image that a developer builds and tests on a
laptop can run at scale, in production, on VMs, private, public clouds
and more.

• Main features:
• versioning (git-like)

• component re-use

• sharing (e.g. through public
repositories)

Corso CNAF 09-12/12/2019 12

Corso CNAF 09-12/12/2019 13

Note that a Docker Engine must be
present in the hosts

The test infrastructure for this course

• Each of you has been allocated a VM with CentOS 7, a public IP
address, 4GB RAM, a 20GB disk and 2 Virtual CPU.

• You should have already received your credentials to access your VM
– if not, let us know now.

• You should now log on to your VM. We will use it for the hands-on
on containers and in other lectures during this course.

Corso CNAF 09-12/12/2019 14

Hands-on: the Docker daemon
• Recall that a computer daemon is a program that runs as a background process

(and not, for example, a program that is run by an interactive user).
• In order to use Docker on a machine, that machine must have the Docker engine

(or the Docker daemon) installed and running. Do not assume that, by default,
this daemon is already installed.
• Is it installed on your VM? How can you check?

• If it is not installed, install it yourself:
ubuntu@VM1:~$ sudo yum install docker-ce docker-ce-cli containerd.io

• Check that Docker is properly installed now,
with this command:
ubuntu@VM1:~$ docker --version

It should return something like this:
Docker version 19.03.5, build e8ff056

Corso CNAF 09-12/12/2019 15

https://forums.docker.com/t/difference-between-docker-
ee-docker-ce-and-docker/41083

The first docker commands

• By default, the “container
image registry” on the left is
the service running at
https://hub.docker.com
(called “Docker Hub”). It
stores more than 100,000
container images.

• To pull a container image
from Docker Hub, use the
command docker pull.

• To run (execute) a container,
use the command docker
run.

Corso CNAF 09-12/12/2019 16

https://hub.docker.com/

Search, pull, run and push

• Try these commands on your VM:
• Search for a container image at Docker Hub:

• docker search ubuntu (or e.g. docker search rhel – what would this do?)

• Fetch (pull) a Docker image (in this case, an Ubuntu container):
• docker pull ubuntu

• Execute (run) a docker container:
• Run the “echo” command inside a container and then exit:

• docker run ubuntu echo "hello from the container"
hello from the container

• Run a container in interactive mode:
• docker run -i –t ubuntu /bin/bash

• Ship (push) a Docker image to a Docker repository (by default, Docker Hub) –
skip these commands for the time being, we’ll say more about this later:

• docker login

• docker push USER/my-image

Corso CNAF 09-12/12/2019 17

Note that you are inside a Ubuntu container,
while the “host system” (your VM) runs CentOS

How efficient is docker?
ubuntu@VM1:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest 7698f282e524 7 days ago 64.2MB

→ the latest Ubuntu image takes less than 70MB of disk space as a
container. If you had downloaded a full Ubuntu (server) distribution, it
would be more in the range of 900MB.

ubuntu@VM1:~$ time docker run ubuntu echo "hello from the container"
hello from the container

real 0m1.362s
user 0m0.036s
sys 0m0.050s

→ The total time it takes on this system (not really a powerful one) to start a
container, execute a command inside it and exit from the container is a bit
more than a second. How long would it take if we used a full VM instead?

Corso CNAF 09-12/12/2019 18

How to extend a docker container (1)

• Suppose you need to execute a command or app inside a container, but it is
not installed in the image you pulled from Docker Hub. For example, you
would like to use the ping command but by default it’s not available:

• ubuntu@VM1:~$ docker run ubuntu ping www.google.com
docker: Error response from daemon: OCI runtime create failed:
container_linux.go:345: starting container process caused "exec: \"ping\":
executable file not found in $PATH": unknown.

• We can install it ourselves; it is in the package iputils-ping:
• ubuntu@VM1:~$ docker run ubuntu /bin/bash -c "apt update; apt -y install
iputils-ping"

• But it still doesn’t work!?
• ubuntu@VM1:~$ docker run ubuntu ping www.google.com
docker: Error response from daemon: OCI runtime create failed:
container_linux.go:345: starting container process caused "exec: \"ping\":
executable file not found in $PATH": unknown.

• Who can explain this? The ping command was successfully installed!

Corso CNAF 09-12/12/2019 19

http://www.google.com/
http://www.google.com/

How to extend a docker container (2)

• Whenever you issue a docker run <image> command, a new container is
started, based on the original container image.
• Check it yourself with the docker ps -a command.

• If you modify a container and then want to reuse it (which is often the
case!), you need to save the container, creating a new image.

• So, install what you need to install (e.g. the iputils-ping package, using
the same command as before) , and then issue a commit command like
docker commit xxxx ubuntu_with_ping

• This locally commits a container, creating an image with the name
ubuntu_with_ping (or any other name you like). Take xxxx from the
container ID shown by the docker ps –a output.

• Do it now.

Corso CNAF 09-12/12/2019 20

How to extend a docker container (3)

• Verify that the ping command inside our new image is now working:
• ubuntu@VM1:~$ docker run ubuntu_with_ping ping -c 3 www.google.com

PING www.google.com (216.58.216.100) 56(84) bytes of data.

64 bytes from ord30s22-in-f100.1e100.net (216.58.216.100): icmp_seq=1 ttl=43 time=18.5 ms

64 bytes from ord30s22-in-f100.1e100.net (216.58.216.100): icmp_seq=2 ttl=43 time=18.5 ms

64 bytes from ord30s22-in-f100.1e100.net (216.58.216.100): icmp_seq=3 ttl=43 time=18.5 ms

--- www.google.com ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 18.501/18.539/18.586/0.035 ms

• To recap: we have an original image (called “ubuntu”), downloaded from
Docker Hub, and a new image (called “ubuntu_with_ping”), created by us
extending the “ubuntu” image (i.e. installing some packages). Let’s check:

• ubuntu@VM1:~$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu_with_ping latest 3e7a8818665f 11 minutes ago 97.2MB

ubuntu latest 7698f282e524 7 days ago 69.9MB

Corso CNAF 09-12/12/2019 21

http://www.google.com/

Cleaning up container space

• When you don’t need some containers anymore, it’s wise to check
and clean up disk space. This is done with the docker system
commands.

• Check disk space used by containers with docker system df:
• ubuntu@VM1:~$ docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE

Images 2 2 97.22MB 69.86MB (71%)

Containers 4 0 27.36MB 27.36MB (100%)

Local Volumes 0 0 0B 0B

Build Cache 0 0 0B 0B

• Reclaim disk space with docker system prune, then check again:
• ubuntu@VM1:~$ docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE

Images 2 0 97.22MB 97.22MB (100%)

Containers 0 0 0B 0B

Local Volumes 0 0 0B 0B

Build Cache 0 0 0B 0B

Corso CNAF 09-12/12/2019 22

Removing unused images
• Besides containers, you can also remove images you don’t need anymore with
docker rmi <image>:

ubuntu@VM1:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu_with_ping latest 3e7a8818665f 29 minutes ago 97.2MB
ubuntu latest 7698f282e524 7 days ago 69.9MB

ubuntu@VM1:~$ docker rmi ubuntu_with_ping
Untagged: ubuntu_with_ping:latest
Deleted: sha256:3e7a8818665fc7eb1be20e8d633431ad8c0bdfba05d6d11d40edd32a915708bb
Deleted: sha256:a4c24b3590e4e95c30d4d0e82d3f769cde94436a5dd473b4e7ec7bd4682ce1b7

ubuntu@VM1:~$ docker rmi ubuntu
Untagged: ubuntu:latest
Untagged: ubuntu@sha256:f08638ec7ddc90065187e7eabdfac3c96e5ff0f6b2f1762cf31a4f49b53000a5
Deleted: sha256:7698f282e5242af2b9d2291458d4e425c75b25b0008c1e058d66b717b4c06fa9
Deleted: sha256:027b23fdf3957673017df55aa29d754121aee8a7ed5cc2898856f898e9220d2c
Deleted: sha256:0dfbdc7dee936a74958b05bc62776d5310abb129cfde4302b7bcdf0392561496
Deleted: sha256:02571d034293cb241c078d7ecbf7a84b83a5df2508f11a91de26ec38eb6122f1

ubuntu@VM1:~$ docker system df
TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 0 0 0B 0B
Containers 0 0 0B 0B
Local Volumes 0 0 0B 0B
Build Cache 0 0 0B 0B

Corso CNAF 09-12/12/2019 23

Pushing images to Docker Hub (1)

• We have already seen the command docker push <image>. This
writes an image to Docker Hub.

• In order to issue that command, you first need an account on Docker
Hub: go to https://hub.docker.com and sign up (or sign in, if you
already have an account there) – it’s free.

• Do it now.

• Click on Create Repository, make it public (careful: everybody will be
be able to see the images you upload there!) and give it a name, for
example test (only lowercase is allowed), a description, and click on
“Create”. This will create your public repository, called e.g. “test”.

Corso CNAF 09-12/12/2019 24

https://hub.docker.com/

Pushing images to Docker Hub (2)
• To push an image (for example the ubuntu_with_ping image we

created earlier) to your new repository, we must give a tag to the image
and specify our Docker Hub username and repository as part of the
image name.
• The full image name should be <username>/<repository>:<tag>.
• In my case, the first part should be “dsalomoni/test”. As tag, you can put any

string; let’s set it to “ubuntu_with_ping_1.0”.
• In order to assign this tag to our existing image, find out its “image id” with the
docker images command:

• ubuntu@VM1:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu_with_ping latest 7c45b9ad4de6 45 minutes ago 97.2MB
ubuntu latest 7698f282e524 7 days ago 69.9MB

• ubuntu@VM1:~$ docker tag 7c45b9ad4de6 dsalomoni/test:ubuntu_with_ping_1.0

• ubuntu@VM1:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu_with_ping latest 7c45b9ad4de6 About an hour ago 97.2MB
dsalomoni/test ubuntu_with_ping_1.0 7c45b9ad4de6 About an hour ago 97.2MB
ubuntu latest 7698f282e524 7 days ago 69.9MB

Corso CNAF 09-12/12/2019 25

Images before
the new tag

Images after
the new tag

Pushing images to Docker Hub (3)

• Now log in to Docker Hub with your username and password:
• ubuntu@VM1:~$ docker login
Login with your Docker ID to push and pull images from Docker
Hub. If you don't have a Docker ID, head over to
https://hub.docker.com to create one.
Username: dsalomoni
Password:
WARNING! Your password will be stored unencrypted in
/home/ubuntu/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#cre
dentials-store

Login Succeeded

• Finally, we can push our image to Docker Hub:
• ubuntu@VM1:~$ docker push dsalomoni/test:ubuntu_with_ping_1.0

Corso CNAF 09-12/12/2019 26

We’ll disregard
this warning here.

For more info,
see the URL in
the message.

https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Verifying our Docker Hub repository

• Go to Docker Hub (https://hub.docker.com/), log in with your
username, click on the “test” repository, and then on “Public View”
and “Tags”. You should see something like this:

Corso CNAF 09-12/12/2019 27

https://hub.docker.com/

Handling multiple commands

• If you have several commands to apply to a container (for example,
you want to install many packages), you could run the container in
interactive mode as shown earlier (use the “-i” switch), and then issue
the various commands at the prompt once you are in the container.
• For example, when you are running a container interactively, you could issue

a sequence of commands such as
apt update
apt install –y wget unzip
wget <some_file>
unzip <some_other file>

…

• Once you exit from the container, remember to commit the container,
or your modifications to the container will be lost (like in our “ping”
example earlier).

Corso CNAF 09-12/12/2019 28

Dockerfiles
• Rather than modifying a container “by hand”, connecting interactively and

then installing packages as previously shown, it is often much more
convenient to put all the required commands in a text file (called by
default Dockerfile), and then build an image executing these commands.

• As an example, through the following Dockerfile we create a new image
starting from an Ubuntu image. We then install a web server (through the
apache2 package) and tell the new image to serve a simple html page
(index.html), which we copy from our system:

$ cat Dockerfile
FROM ubuntu
RUN apt update
RUN apt install -y apache2
COPY index.html /var/www/html/
EXPOSE 80
CMD ["apachectl", "-D", "FOREGROUND"]

Corso CNAF 09-12/12/2019 29

This Dockerfile:
• Starts from the Ubuntu container
• Updates all installed packages
• Installs the apache2 web server
• Copies an index.html file from our system
• Exposes port 80 (the standard web port)
• Starts the apache2 web server through the

"apachectl" command

The index.html file

• This is a sample index.html file that will just show a greeting message:
ubuntu@VM1:~$ cat index.html

<!DOCTYPE html>

<html>

<h1>Hello from a web server running inside a container!</h1>

This is an exercise for the INFN course.

</html>

• Create a directory called containers/simple with the command mkdir
-p $HOME/containers/simple and change to that directory (cd
$HOME/containers/simple).

• Copy both the previous Dockerfile and index.html to that directory.

Corso CNAF 09-12/12/2019 30

Build images via Dockerfiles
• Once we have a Dockerfile, we can create (“build”) an image and name

it for example “web_server” with the command
docker build –t web_server .

• Note: the . at the end the line above is important! (it tells docker we are
building taking the Dockerfile and other files from the current directory.)

• We can now run our new image in the background (flag –d) with
docker run –d –p 8080:80 web_server

• The -p 8080:80 part redirects port 80 on the container (the port we
exposed in the Dockerfile) to port 8080 on the host system (that is, your
VM).

• Check that everything works opening in a browser this page:
http://<VM_ip_address>:8080/

• Try it now!
Corso CNAF 09-12/12/2019 31

http://localhost:8080/

Check that our web server is running

• Check with:
ubuntu@VM1:~$ docker ps

CONTAINER

ID IMAGE COMMAND CREATED STATUS PORT

S NAMES

f9dc164be001 web_server "apachectl -D FOREGR…" 12 minutes ago Up 12

minutes 0.0.0.0:8080->80/tcp laughing_pare

• Stop the container with:
ubuntu@VM1:~$ docker stop f9dc164be001

• You can now type docker run –d –p 8080:80 web_server any time
you want to instantiate a new web server.

• What happens if you type docker run –d –p 8081:80 web_server ?

Corso CNAF 09-12/12/2019 32

Containers are ephemeral

• An important point to remember is that any data that is created within a running
container is only available within the container, and only when the container is
running.

• Let’s prove this. Run a container using the Ubuntu image in interactive mode:
docker run -i -t ubuntu /bin/bash

• Once in the container, create a file and verify it is there:
root@2000824922fb:/# touch my_new_file # this creates an empty file in the container file system

root@2000824922fb:/# ls
bin boot dev etc home lib lib64 media mnt my_new_file opt proc root run sbin srv sys

tmp usr var

root@2000824922fb:/#

• Now exit from the container. Run it again with the same command as above
(docker run -i -t ubuntu /bin/bash).

• Is the file still there? (it should not!)
• It is not there, because every time you write docker run you start a new Ubuntu container.

Corso CNAF 09-12/12/2019 33

Connect a container to a host file
system

• So, what if we want to retain data within a container?

• We can map a directory that is available on the host (the system where we run the
docker command, e.g. your VM), to a directory that is available on the container.
This is done with the docker flag -v, like this:

docker run -v /host/directory:/container/directory <other docker arguments>

• For example:
• Create a “scratch” directory with mkdir -p $HOME/containers/scratch and change to that

directory (cd $HOME/containers/scratch).
• Create a dummy 10MB file there with head -c 10M < /dev/urandom > dummy_file

• Map the scratch directory to the directory /cointainer_data on the container:
docker run -v $HOME/containers/scratch/:/container_data -i -t ubuntu /bin/bash

• Now, when you are within the container, if you write ls /container_data you
should see the dummy file. Do it now.

• Verify also that you can write to that directory from the container, and that you can
find the written data when you are on the VM. What about permissions?

Corso CNAF 09-12/12/2019 34

Connect a container to a Docker
volume (1)

• In the previous slide, we mapped a directory that was
available on the host to a directory on the container. This
is called a bind mount.

• But what if we want to copy or move our docker
container to a different host, with a different directory
structure? Or perhaps with a different operating system?
Remember that Docker promises to be system-
independent.

• We can (and should generally prefer to) use Docker
volumes.

• Docker volumes are persistent but are not tied to the
specific filesystem of the host and are completely
managed by Docker itself.

Corso CNAF 09-12/12/2019 35

We’ll see later what
a tmpfs mount is.

Connect a container to a Docker
volume (2)

• You can create a new Docker volume with the command
docker volume create some-volume

• Try these self-explanatory commands:
docker volume ls

docker volume inspect some-volume

docker volume rm some-volume

• You can also start a container with a volume which does not exist yet
with the -v flag. It will be automatically created:
docker run -i -t --name myname -v some-volume2:/app ubuntu /bin/bash

• Notice that we also introduced here the flag --name to give an explicit name
(here: myname) to a container.

• In this case, check the container with the command docker inspect myname
and look for the Mounts section. Try it now: what do you see?

Corso CNAF 09-12/12/2019 36

Removing docker volumes

• As we said, Docker volumes are directly managed by Docker, in some
Docker-specific area (see the docker inspect command we used
earlier to know more). They occupy some space in the local file
system.

• When you do not need a docker volume anymore, it is wise to reclaim
its space:
docker volume rm <volume_name>

• Can you remove a volume which is being used by a container? Try.

• More in general, you can remove all unused docker volumes with
docker volume prune

• Note that the docker system prune command we showed previously does
not remove volumes!

Corso CNAF 09-12/12/2019 37

tmpfs mounts
• If you are running Docker on Linux (so far, this is the case

for us), there is a third option to mount a volume on a
container: the so-called tmpfs mount option.

• When you create a container with a tmpfs mount, the
container can create files outside the container’s writable
layer, directly into the host system memory (RAM).

• This is a temporary volume, i.e. it will be automatically
removed once the container exits. It is useful for example if
you have sensitive data that you do not want to store
neither in the container nor in a dedicated volume (be it
filesystem-based or docker-based).

• An example of mounting the /app directory of a container
under a tmpfs mount (whatever you write in that directory
will only be stored in RAM):
docker run -it --name mytmp --tmpfs /app ubuntu /bin/bash

Corso CNAF 09-12/12/2019 38

Detour: using the tar command
• In Linux, tar (for “tape archive”: this tells you how old this command is) is one of the most useful

commands to package several files or directories into a single file, often called tarball. It can be
combined with the gzip tool to also compress the archived file (with this option, it is like the Windows
zip and unzip tools).

• Typical extensions:
• .tar→ uncompressed archive file using tar
• .zip→ compressed archive file using zip
• .gz→ file (it can be an archive or not) compressed using gzip
• .tar.gz or .tgz→ a compressed archive file using tar

• Examples of some useful tar commands (see e.g. https://www.howtoforge.com/tutorial/linux-tar-
command/ for more information):

• Create an archive file called my_devstuff.tar with the directory /home/davide/devstuff/ and its content:
tar -cvf my_devstuff.tar /home/davide/devstuff/ # my_devstuff.tar will be created in the current directory

tar -xvf my_devstuff.tar # extract my_devstuff.tar in the current directory

tar -xvf my_devstuff.tar -C /home/davide/newdir # extract my_devstuff in another directory

• The same archive as above, but compressed:
tar -cvzf my_devstuff.tar.gz /home/davide/devstuff/ # note the z flag to enable compression

tar -xvf my_devstuff.tar.gz # note that the uncompress command is the same as above

• List the content of an archive file, compressed or not:
tar -tf <tar_filename>

Corso CNAF 09-12/12/2019 39

https://www.howtoforge.com/tutorial/linux-tar-command/

Copy an image somewhere else

• So far, we have pushed our images to Docker Hub, in a public
repository. But what if we wanted to copy our images to another
system, without going through Docker Hub?

• Docker allows to export an image to a tar file specifying its name (you
could also compress it, if you wanted to save space):
docker save –o my_exported_image.tar my_local_image

docker save my_local_image | gzip > my_exported_image.tar.gz

• You can then copy the tar file (my_exported_image.tar) to another
system via e.g. scp, and then import it to a docker image on that
system:
docker load –i my_exported_image.tar

Corso CNAF 09-12/12/2019 40

Copy a Docker volume somewhere else
• Recall that Docker volumes are independent of the local file system structure and

are managed directly by the Docker engine.

• In order to transfer a docker volume to another host, you must first back it up to a
tar file using the --volumes-from flag. This flag must be applied to an existing
container (even if not running) which mounted the volume you want to back up,
with a command similar to the following one:
docker run --rm --volumes-from EXISTING_CONTAINER -v /tmp:/backup ubuntu tar cvf
/backup/backup.tar /app

• This command backs up a volume that was mounted by the EXISTING_CONTAINER under the
directory /app into the file backup.tar in the /tmp directory of the local system.

• At this point, you can simply transfer the tar file to another machine and restore it to
another running container.

• For example, once you have the tar in the /tmp directory of another machine, you
can do:
docker run -it -v /app --name myname2 ubuntu /bin/bash (this runs myname2 interactively)
(in another shell) docker run --rm --volumes-from myname2 -v /tmp:/backup ubuntu bash -
c "cd /app && tar xvf /backup/backup.tar --strip 1"

Corso CNAF 09-12/12/2019 41

Hands-on: copy your image to your
laptop and run it

• You should now copy an image you created on your VM in the
previous assignments to your own laptop.

• You should then load and run it locally. There are a couple of cases
here:

1. If you have Docker already installed on your laptop, you can load and run
the image immediately.

2. If you do not have Docker installed on your laptop, install it.
• Windows: https://docs.docker.com/docker-for-windows/install/

• Linux: if you have Ubuntu (similar this other Debian-derived distributions), see
https://docs.docker.com/install/linux/docker-ce/ubuntu/. If you have RedHat, see
https://docs.docker.com/install/linux/docker-ce/centos/

• MacOS: https://docs.docker.com/docker-for-mac/

Corso CNAF 09-12/12/2019 42

https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/docker-for-mac/

Doing local development

• Now that you have Docker installed on your laptop, try out the
commands you issued on your VM (which is running on some Cloud
infrastructure) locally.

• In general, it is very handy to do local developments with docker
directly on your laptop. In many cases, this applies also to relatively
complex environments, as we will see. Once we are happy with the
results in a local environment, we can move to the Cloud.

Corso CNAF 09-12/12/2019 43

Application stacks: Docker Compose

• We have seen how easy it is to create and run a Docker container,
pulling images from Docker Hub. We then learned how to extend an
image, either manually adding packages to it and then committing
the changes or writing a Dockerfile to automatize the whole process.

• We now also know how to export an image to a tar file, for example
because we want to share it without using Docker Hub, or to save it
for backup purposes.

• We will now move on to consider how to create “application stacks”:
that is, how to create multiple containers linked together to provide a
multi-container service, all on a single VM.

• This is done via Docker Compose, invoked via the docker-compose
command.

Corso CNAF 09-12/12/2019 44

A scenario for Docker Compose

• docker-compose works by parsing a text file, written in the YAML
language (see https://yaml.org for more info). This file, which is by
default called docker-compose.yml, defines how our application
stack is structured.

• We will now use docker-compose to create and launch an
application stack made of two connected containers, both running on
our VM:

1. A MySQL database. It won’t be accessible from the Internet.

2. A WordPress instance. It will be accessible from the Internet. WordPress
(https://wordpress.org) is a very popular open source software used to
create websites or blogs.

Corso CNAF 09-12/12/2019 45

https://yaml.org/
https://wordpress.org/

Our app stack architecture

Corso CNAF 09-12/12/2019 46

App-specific
private network

(backend)

Database for
WordPressWordPress

Web server

Internet

VM

App-specific
public network

(frontend)

version: '3'

services:

database:

image: mysql:5.7

environment:

- MYSQL_DATABASE=wordpress

- MYSQL_USER=wordpress

- MYSQL_PASSWORD=testwp

- MYSQL_RANDOM_ROOT_PASSWORD=yes

networks:

- backend

wordpress:

image: wordpress:latest

depends_on:

- database

environment:

- WORDPRESS_DB_HOST=database:3306

- WORDPRESS_DB_USER=wordpress

- WORDPRESS_DB_PASSWORD=testwp

- WORDPRESS_DB_NAME=wordpress

ports:

- 8080:80

networks:

- backend

- frontend

networks:

backend:

frontend:

Corso CNAF 09-12/12/2019 47

docker-compose.yml
This builds the container for the database,

with only the “backend” network

This builds the container for WordPress,
with both the “backend” and “frontend” networks

Port 8080 on the host (VM1)
is mapped to port 80 on the

container

“Obvious” note: although this is just for a demo,
do not use the passwords shown in this screen!

Note that here we refer
to the other container

Container image for mySQL
(from Docker Hub)

Container image for WordPress
(from Docker Hub)

Configuration variables
for the container software

Build & run the application stack
• Create a directory with mkdir –p $HOME/containers/compose,

change to that directory with cd $HOME/containers/compose and
copy there the docker-compose.yml file of the previous slide.

• Install docker-compose on your VM with
sudo yum install docker-compose

• Build the application stack:
docker-compose up –-build –-no-start

• Start it:
docker-compose start

• If you now open a browser pointing to your VM’s public IP address on
port 8080 (look at the previous docker-compose.yml), you should get
the set-up page for WordPress on the right. Go on and set it up.

• Once WordPress is set up, you should see the default WordPress home
page, like the one on the right (which of course you could graphically
customize).

• Once the app stack is started, the running containers can be seen with
the usual docker ps command.

• The application stack can be stopped with:
docker-compose stop

• Try this yourself now.

Corso CNAF 09-12/12/2019 48

Specifying volumes in docker-compose

• If you wish to use docker volumes, they can also be specified in the
docker-compose YAML file. For example:
version: ’3’

volumes:

my_volume_1:

my_volume_2:

services:

application_1:

volumes:

- my_volume_1:/app1/dir

[…]

application_2:

volumes:

- my_volume_2:/app2/dir

[…]

Corso CNAF 09-12/12/2019 49

This automatically creates the Docker volume
my_volume_1, mapping it to the directory

/app1/dir on the container

Why use Docker volumes?

• Take the previous Wordpress + MySQL example. If you completely remove
the application stack (with docker-compose down, this is different from
just stopping it) and then build and start it, you will get an entirely new
Wordpress installation – so you will have to set it up from scratch.

• You could instead persist your MySQL database modifying your docker-
compose.yml file to use volumes, like this:

volumes:

db_data:

services:

database:

image: mysql:5.7

volumes:

- db_data:/var/lib/mysql

[...]

Corso CNAF 09-12/12/2019 50

Create a Docker volume called db_data, mapped to
the /var/lib/mysql directory on the container

(this is where MySQL data is stored)

Some “advanced” tips on Docker
Compose (1)

• You can check what’s going on with your application stack after you have
started it (with docker-compose start) with

docker-compose logs -f

This will continuously follow the logs generated by your containers. Very
useful to verify possible issues.

• Adding restart: always for any or all the services in your docker-
compose.yml file will make them restart automatically when your host
system boots, or when the Docker daemon restarts.
• Note: it will not automatically restart your containers if you manually kill them.

Corso CNAF 09-12/12/2019 51

Some “advanced” tips on Docker
Compose (2)

• Depending on depends_on is not always a good idea: this only starts
containers in a certain dependency order.

• Example from the Wordpress + MySQL stack, taken from the log output:
database_1 | 2019-11-23T09:30:22.821543Z 0 [Note] InnoDB: Buffer pool(s) load completed at 191123 9:30:22

wordpress_1 |

wordpress_1 | MySQL Connection Error: (2002) Connection refused

wordpress_1 |

wordpress_1 | WARNING: unable to establish a database connection to 'database:3306’

wordpress_1 | continuing anyways (which might have unexpected results)

• If you need to wait until a certain container is really “ready” (whatever this
means for your application), you must use something more specific than
depends_on, e.g. https://github.com/vishnubob/wait-for-it or
https://github.com/Eficode/wait-for. Be warned that in some cases this is not
enough. For more info: https://docs.docker.com/compose/startup-order/

Corso CNAF 09-12/12/2019 52

https://github.com/vishnubob/wait-for-it
https://github.com/Eficode/wait-for
https://docs.docker.com/compose/startup-order/

Limitations of Docker Compose

• As we have seen, Docker Compose is very handy to create
combinations of containers running on the same machine (in our
case, your VM).

• It is best suitable if you don’t need automatic scaling of resources or
multi-server environments.

• For complex set ups, other tools such as Docker Swarm or Kubernetes
are more appropriate. We’ll cover them in one of the next lectures.

Corso CNAF 09-12/12/2019 53

Some best practices for writing
containers

1. Put a single application per container. For example, do
not run an application and a database used by the
application in the same container.

2. Explicitly define the entry point in the container with the
CMD command in the Dockerfile.

3. If in a Dockerfile you have commands that change often,
put them at the bottom of the Dockerfile. This way, you
speed up the process of building the image out of the
Dockerfile.

4. Keep it small: use the smallest base image possible,
remove unnecessary tools, install only what is needed.

5. Properly tag your images, so that it is clear which version
of a software it refers to.

6. Do you really want / can you use a public image? Think
about possible vulnerabilities, but also about potential
license issues.

Corso CNAF 09-12/12/2019 54

More (and more detailed) information available at
https://bit.ly/2Zr6Hyq

https://bit.ly/2Zr6Hyq

A few words on Docker security (1)

• As we have seen so far, if you want to run Docker containers, you need to have
Docker installed on your host system.

• If Docker is not installed, you can install it yourself, but you must have root
access in order to do that.

• Once you have installed Docker, you can download and execute containers from
DockerHub or other sources.
• Be careful, because this is potentially a big security threat: some containers that you

download might be compromised (e.g. include viruses or trojan)!

• How can you send passwords, certificates, encryption keys, etc. to tasks /
applications in a Docker swarm cluster? Do not embed them into the containers,
and do not store them e.g. in GitHub repositories!
• Docker has a “Secrets Management” feature, which is a standardized interface for accessing

secrets. See https://dockr.ly/2H4M5SU for details.
• Other resource orchestrators, such as Kubernetes (check next lectures), have similar

solutions.

Corso CNAF 09-12/12/2019 55

https://dockr.ly/2H4M5SU

A few words on Docker security (2)

• If the host where the Docker daemon is running gets compromised,
container isolation is gone. So, it is important to make sure that the host
system is properly secured (i.e. regularly update it!).

• On other hand, there could be exploits that make it possible for containers
to bypass isolation (remember that the Docker daemon requires root
privileges) and get access in privileged mode to the host system.

• Since you can so easily start up containers on a system, there is the
possibility of a Denial of Service attack, targeting to consume all resources
on the host system.

• Do not assume that containers should be immutable! They might contain
outdated software, that must be periodically patched and upgraded.

• For more details, see http://bit.ly/2kEpV16.

Corso CNAF 09-12/12/2019 56

http://bit.ly/2kEpV16

An important issue with Docker

• There is no doubt that Docker containers are very handy and useful.
However, in general, the adoption (i.e. installation) of Docker is quite
slow in traditional clusters and in HPC centers.

• In other words, what often happens is that Docker itself is not
installed on the machines. Therefore, you cannot run containers
(unless you have root privileges and can therefore install it
autonomously).
• This is sometimes because the system administrators might think that there

could be important security concerns with Docker, or because it is another
service to maintain, or because it is too new… and so on.

Corso CNAF 09-12/12/2019 57

udocker

• In the INDIGO-DataCloud project, we developed udocker: it’s a kind
of “userland docker”, i.e. a tool to run contents of Docker images
without requiring any support from the kernel.

• There are no special dependencies, aside from python 2.7 and libc.

• In particular, udocker is intended to be run by unprivileged users.

• No special daemon is required. System-wide installation is possible
but entirely optional (each user can “install it” individually).

• It is freely available at https://github.com/indigo-dc/udocker

Corso CNAF 09-12/12/2019 58

https://github.com/indigo-dc/udocker

The udocker architecture

• It is a single-file python script.

• It fetches public images by default from Docker Hub.
• It can also import image tarballs exported via docker save.

• It creates a container filesystem hierarchy in $HOME/.udocker

• It internally uses PRoot (see https://proot-me.github.io) for limited
sandboxing.
• Almost no CPU overhead.
• Negligible data I/O overhead.
• Sensible metadata I/O overhead.

• Other execution mechanisms than PRoot are available (see later).

Corso CNAF 09-12/12/2019 59

https://proot-me.github.io/

udocker advantages

• Provides a docker-like command line interface.

• Supports a subset of docker commands: search, pull, import, export, load, create and run.

• Understands docker container metadata.

• Can be deployed by end users.

• Does not require privileges for installation.

• Does not require privileges for execution.

• Does not require compilation: just transfer the Python script and run.

• Encapsulates several execution methods.

• Includes the required tools already compiled to work across systems.

• Tested also with GPGPU and MPI applications.

• Runs on new and old Linux distributions, including CentOS 6, CentOS 7, Ubuntu 14, Ubuntu
16, Fedora, etc.

Corso CNAF 09-12/12/2019 60

udocker limitations

• Images cannot be created by udocker.
• That is, you must use Docker on another system to build images!

• Privileged OS operations are not possible.

• Debugging inside containers does not work.

• udocker is not a privilege boundary! (i.e., it does not enforce special
security measures: the udocker process runs with the privilege of the
current user.)

Corso CNAF 09-12/12/2019 61

Install udocker on your VM

• Let’s create a dedicated directory and change to it:
mkdir -p $HOME/containers/udocker

cd $HOME/containers/udocker

• udocker is a single file Python script, which we can download from its
public repository:
curl https://raw.githubusercontent.com/indigo-

dc/udocker/master/udocker.py > udocker

• Let’s make the script executable and run it with the “install” option to
set it up (this only needs to be done once):
chmod u+x ./udocker

./udocker install

Corso CNAF 09-12/12/2019 62

Check that udocker works

• After installation, ./udocker help should return something like this:
Syntax:

udocker <command> [command_options] <command_args>

Commands:

search <repo/image:tag> :Search dockerhub for container images

pull <repo/image:tag> :Pull container image from dockerhub

images :List container images

create <repo/image:tag> :Create container from a pulled image

ps :List created containers

rm <container> :Delete container

run <container> :Execute container

[…]

Corso CNAF 09-12/12/2019 63

docker vs. udocker: comparison

docker
• # docker search ubuntu

• # docker pull ubuntu

• # docker run --name=my_ub

ubuntu echo 'Hello from a

container'

• # docker rm mycontainer

udocker
• $ udocker search ubuntu

• $ udocker pull ubuntu

• $ udocker create –-name=my_ub

ubuntu

• $ udocker run my_ub echo 'Hello

from a container'

• $ udocker rm my_ub

Corso CNAF 09-12/12/2019 64

Tip: if you have installed udocker in directory /mydir, put the following line at the end of the file .bashrc:
alias udocker= '/mydir/udocker'

You can then call udocker directly, without specifying any path before it.

udocker and root emulation

Corso CNAF 09-12/12/2019 65

Root emulation

Run a container as yourself

Corso CNAF 09-12/12/2019 66

Run as myself, mounting
my own local directory

Corso CNAF 09-12/12/2019 67

Slide courtesy Jorge Gomes

Corso CNAF 09-12/12/2019 68

Slide courtesy Jorge Gomes

Corso CNAF 09-12/12/2019 69

Slide courtesy Jorge Gomes

Corso CNAF 09-12/12/2019 70

Slide courtesy Jorge Gomes

Corso CNAF 09-12/12/2019 71

Slide courtesy Jorge Gomes

Hands-on: test udocker (1)
• Write this simple Python program to the file quotes.py in the udocker

directory on your VM. It extracts the ”Quote of the Day” using the free
quotes.rest API provided by “They Said So”:
import json

import requests

r = requests.get('http://quotes.rest/qod.json')

j = r.json()

author = j['contents']['quotes'][0]['author'].encode("utf-8")
quote = j['contents'][' quotes'][0]['quote'].encode("utf-8")

print '"%s "' % quote
print '(%s)' % author

• Verify that it works, running it with python quotes.py.

Corso CNAF 09-12/12/2019 72

Hands-on: test udocker (2)
• Now create a new docker image on your VM and copy quotes.py to that image through

this Dockerfile (here we are deriving the new image from the minimal Linux image called
alpine):
FROM alpine

RUN apk add --no-cache python py-pip

RUN pip install requests

COPY quotes.py /quotes.py

ENTRYPOINT ["/usr/bin/python", "quotes.py"]

• You are encouraged to investigate yourself the difference between the command ENTRYPOINT used
above and the command CMD used in previous examples.

• As usual, you should build the new Docker image, let’s call it my_quotes, with
docker build -t my_quotes .

• We now have a new Docker image called my_quotes that prints the quote of the day. Check
that it works with
docker run my_quotes

• Note: the size of this new image is about 59MB and on my VM it took about 20 seconds to
build (with the base Alpine image already downloaded). When I instead used a Dockerfile
deriving from Ubuntu (this is left as an exercise to you), I got a 434MB image, and the build
time (with the base Ubuntu image already downloaded) was 3 minutes and 13 seconds.

Corso CNAF 09-12/12/2019 73

Hands-on: test udocker (3)

• Now, push the my_quotes image to your Docker Hub repository. Do
this on your own (look back at how we did it previously if you need).

• We now want to check that it works with udocker through these
commands:
udocker pull dsalomoni/test:my_quotes_v1.0 (or whatever is the name of your
container on Docker Hub)

udocker create –name=my_quotes dsalomoni/test:my_quotes_v1.0

udocker --quiet run my_quotes

• Do it now.

• We have then verified that through udocker we are able to pull and
run standard containers. This would have worked even if we did not
have root privileges nor Docker installed.

Corso CNAF 09-12/12/2019 74

Optional Hands-on: containers in batch jobs

• Since udocker basically only requires Python, it is possible to submit
jobs to a batch system that runs containers, even if Docker is not
installed on the execution nodes of the batch system.

• It should work like this:
• Write a job script that, when executed on a node of the batch system cluster,

fetches udocker from its public repository.

• The job script should then run udocker on some container, writing the output
somewhere.

• An assignment could therefore be to encapsulate one of your
applications in a container and submit one or more jobs making use
of udocker using the HTCondor cluster that you will create during
this course.

Corso CNAF 09-12/12/2019 75

Summary
• We covered basic concepts about Containers, comparing them to Virtual Machines.

• We saw how to execute a container, list docker images and extend them to create new containers.

• We then learned how to push containers to repositories on Docker Hub and simplified the building
of containers via Dockerfiles.

• We created a container serving web pages and then connected containers to external file systems,
to volumes and to tmpfs mounts. We also learned how to export and import containers.

• We studied how to combine multiple containers in an application stack with docker-compose.

• We then discussed some Docker limitations, in particular regarding security, introduced udocker
and installed it on our VM.

• We then created a container running a Python program retrieving the Quote of the Day via a REST
call, pushed it to our individual public repository on Docker Hub and used udocker to run it on our
VM.

• Finally, we offered as optional assignment the task to use udocker to run batch jobs on an
HTCondor cluster.

• The next part of this course will deal with Orchestration.

Corso CNAF 09-12/12/2019 76

