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High Energy Physics (HEP)

HEP focus is the study of fundamental interactions among
elementary particles

 quarks and leptons as building blocks

* aiming at a complete understanding of microcosm and macrocosm

HEP physicists create matter

* they need to observe and study it beyond the ordinary one, hence they create
matter in the states it existed fractions of seconds after the Big Bang

HEP physicists’ instruments are particle accelerators plus large and
complicated particle detectors around interaction points

* build and operate accelerators, accelerate particles to collisions, measure
fragments that fly through the active volumes of the detectors = physics!

* or - in the case of Astrophysics - the Universe is a “natural particle accelerator”

This is amazingly fascinating and beautiful. And so complicated..
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HEP with LHC at CERN

Movie here..
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Innovation is hard(er in Big Science)

HEP community is at the frontier of computing technologies

* (apart from the obvious WWW born at CERN..) HEP has driven Grid Computing worldwide

But HEP community is extremely large, work on long timescales, and some
inertia in a otherwise flexible adoption of new paradigms can be observed

 Current generation experimental programmes last *decades*. Long planning, long
construction time, long operation by huge collaborations (~1000s of scientists)

Software and Computing experts from previous generation of experiments
pioneered studies employing ML and laid the ground for the emergence of
ML as an essential tool for HEP

But HEP timescales are decades, while ML/DL evolution timescale is years (or
less..).

Today, important focus is in cross-discipline fertilisation (cultural and technical)

* Incorporating the “latest greatest” new ML/DL tools in experiments that are finally taking
data after decades of construction and large investments.. while maintaining the scientific
rigour required in particle physics analyses.. in such a huge scientific environment.. all this
presents some unique (not only technicall) challenges and opportunities
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Which ML for HEP

Very wide use of supervised ML (mostly)

* e.g. training algorithms to classify data as signal or background by studying
existing labeled (possibly Monte Carlo) data.

Typical ML workflow in HEP? (simplified..)

» problem statement and data preparation: variables relevant to the physics
problem are selected, data are cleansed, etc

e training: e.g. a ML model is trained for classification using signal and
background events (the most human- and CPU- time consuming)

* inference: relatively inexpensive

Typical ML algorithm tfor HEP?

* a large plethora of categories of algorithms to even attempt to list them ..
* mostly: Boosted Decision Trees (BDTs) and Artificial Neural Networks (ANNs)

* then, expanding from these to more..

SOSC 2019 - Bologna, 16-20 September 2019 5 D. Bonacorsi



asimovinstitute.org [1/3]

A mostly complete chart of

~ Input Cell N e U ra l N e tWO r kS Deep Feed Forward (DFF)

O Backfed Input Cell ©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org

»A Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF) — \," SOV
X XK XX
r‘Q Domd /i

@ Hidden Cel - N -
@ Probablistic Hidden Cell

. Spiking Hidden Cell

‘ Capsule Cell

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
- () () ()

. NN . NN . TN,

@ ovvuicl A SN )
AL 0% ORI A

Qi QB Qi

. Match Input Output Cell

. Recurrent Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

. Memory Cell
. Gated Memory Cell

2 Kernel

R

© Convolution or Pool

SOSC 2019 - Bologna, 16-20 September 2019 6 D. Bonacorsi



asimovinstitute.org [2/3]

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

Generative Adversarial Network (GAN)

e aVaV,
AVAYAAAN

02 A A A A 9

AWAVAWAWAWS

SOSC 2019 - Bologna, 16-20 September 2019

Vs Pan o P = 1),
0, 20,

)~ Al A

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

X
v v OB
;:gu;:g‘ .3
o ./‘\'/‘\’ ‘.
0»'

X

Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

7 D. Bonacorsi



asimovinstitute.org [3/3]

Deep Residual Network (DRN) Differentiable Neural Computer (DNC) Neural Turing Machine (NTM)

Attention Network (AN)

Kohonen Network (KN)
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More on ML algorithms in HEP

BDTs/ANNs typically used to classify particles and events

* they are also used for regression, e.g. to obtain the best estimate of particle’s energy based
on the measurements from several detectors

ANNs being used for a while in HEP, then.. — rise of DNINs

e particularly promising when there is a large amount of data and features, as well as
symmetries and complex non-linear dependencies between inputs and outputs

Different types of NNs used in HEP:
o fully-connected (FCN), convolutional (CNN), recurrent (RNN) network

 additionally, NNs are used in the context of Generative Models, when a NN is trained to
mimic multidimensional distributions to generate any number of new instances. Variational
AutoEncoders (VAEs) and more recent Generative Adversarial Networks (GANSs) are two
examples of such generative models used in HEP.

Plus, ML algorithms devoted to time-series analysis and prediction

* in general not relevant for HEP where events are independent from each other

« however, growing interest in these algorithms for HEP-related sequential non-collision data,
e.g. for Data Quality and Computing Infrastructure monitoring (as well as those physics
processes and event reconstruction tasks where time is an important dimension)
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HEP as ML consumers, not producers

At a first approximation, most ML usage in HEP is not ML research

* HEP community is being building domain-specitic applications on top of
existing toolkits and ML algorithms developed by computer scientists, data
scientists, and scientific software developers from outside the HEP world

Work is also being done to understand where HEP problems do not
map well onto existing ML paradigms and how these problems can
be recast into abstract formulations of more general interest
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Frameworks and tools

Vast majority of HEP-physicists (end-users, i.e. data analysts) nowadays
mostly use TMVA in ROOT.

Non-HEP scientists (and not scientists, too) use e.g.:

PYTOLRCH

.?

@Xnet TensorFlow achine learning in Python Q Cafer

Keras theano SPQ

HEP community now more and more open to the worldwide
approach to ML
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Opportunities and challenges

Abundance: the number of ML algos and implementations
in a growing variety of frameworks and libraries

+ drawback: difficult and time-consuming to evaluate tradeoffs for using one
ML “tool” compared to another, and also tradeoffs for ML vs non-ML solutions
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Opportunities and challenges

Abundance: the number of ML algos and implementations
in a growing variety of frameworks and libraries

+ drawback: difficult and time-consuming to evaluate tradeoffs for using one
ML “tool” compared to another, and also tradeoffs for ML vs non-ML solutions

Advancement: extremely quick

+ drawback: HEP research teams need to investigate the numerous
approaches at hand, adequate skills are needed to follow up,
complexity requires not-best-effort engagements
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50000 Framework  GitHub Star Count
B TensorFlow ........ 44508
Tensorflow .
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Opportunities and challenges

Abundance: the number of ML algos and implementations
in a growing variety of frameworks and libraries

+ drawback: difficult and time-consuming to evaluate tradeoffs for using one
ML “tool” compared to another, and also tradeoffs for ML vs non-ML solutions

Advancement: extremely quick

+ drawback: HEP research teams need to investigate the numerous
approaches at hand, adequate skills are needed to follow up,
complexity requires not-best-effort engagements

Open-source and code accessibility, documentation, training: the
portfolio of ML techniques and tools is in constant evolution, many have
well-documented open source software implementations, often

supported by MOOC:s, etc

= drawback: acquired expertise and lessons learned by few people risks to get lost before being adequately
disseminated to a wider community + issues in adequate training of young HEP collaborators
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Opportunities and challenges

Abundance: the number of ML algos and implementations
in a growing variety of frameworks and libraries

+ drawback: difficult and time-consuming to evaluate tradeoffs for using one
ML “tool” compared to another, and also tradeoffs for ML vs non-ML solutions

Advancement: extremely quick

+ drawback: HEP research teams need to investigate the numerous
approaches at hand, adequate skills are needed to follow up,
complexity requires not-best-effort engagements

Open-source and code accessibility, documentation, training: the
portfolio of ML techniques and tools is in constant evolution, many have
well-documented open source software implementations, often

supported by MOOC:s, etc

= drawback: acquired expertise and lessons learned by few people risks to get lost before being adequately
disseminated to a wider community + issues in adequate training of young HEP collaborators

Hype: guarantees attention Troon
and investments -

= drawback: overhyped?! (theano, Spark, ..)
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( google trends)

TensorFlow

Keras

k pytorch
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Up to now..

ML in HEP as the use of field-specific knowledge for feature engineering

i.e. use physicist-designed high-level features as input to shallow algorithms
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Particle properties: energy resolution

Using ML to improve the determination of particle properties is now
commonplace in all LHC experiments

» E.g. energy deposited in calorimeters is recorded by many sensors, which are
clustered to reconstruct the original particle energy. CMS is training BDTs to
learn corrections using all information available in the various calorimeter
sensors - thus resulting in a sizeable improvement in resolution
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[ 2015 ECAL detector performance plots, CMS-DP-2015-057. Copyright CERN, reused with permission |
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Particle ID

Similarly, ML is commonly used to identify particle types

* e.g. LHCb uses NNs trained on O(30) features from all its subsystems, each of
which is trained to identify a specific particle type

» ~3xless mis-ID bkg /particle. Estimates indicate that more advanced
algorithms may reduce bkg by another ~50%

L sssssssaeea s L)
“..“““t.!:.:t.

=
o
=
Q
2,
)
b
o
=
=
o
—
20
—Z
Q
<
=

A log L(p -m)
ProbNNp

0.6 0.8 1
Signal efficiency

[courtesy: M.Williams]
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Discovery of the Higgs boson

ML played a key role in the discovery of the Higgs boson, especially
in the diphoton analysis by CMS where ML (used to improve the
resolution and to select/categorize events) increased the sensitivity
by roughly the equivalent of collecting ~50% more data.

[courtesy M.Pierini]
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We were not supposed to discover the Higgs boson as early as 2012

» Given how machine progressed, we expected discovery by end 2015 / mid 2016

We made it earlier thanks (also) to ML
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Study ot Higgs properties

E.g. analysis of 7 leptons at LHC complicated as they decay before being
detected + loss of subsequently produced neutrinos + bkg from Z decays

* e.g. ATLAS divided the data sample into 6 distinct kinematic regions, and in each a
BDT was trained using 12 weakly discriminating features = improved sensitivity by
~40% vs a non-ML approach

Also part of the

2014 Higgs ML
Kaggle challenge
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High-precision tests of the SM

CMS and LHCb were the first to find evidence for the B%,—u* i decay with a
combined analysis (as rare as ~ 1 / 300 billion pp collisions..)

e BDTs used to reduce the dimensionality of the feature space - excluding the mass - to 1
dimension, then an analysis was performed of the mass spectra across bins of BDT
response

* decay rate observed is consistent with SM prediction with a precision of ~25%, placing
stringent constraints on many proposed extensions to the SM

* To obtain the same sensitivity without ML by LHCb as a single experiment would have
required ~4x more data. Just one of many examples of high-precision tests of the SM at
the LHC where ML can dramatically increase the power of the measurement
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Trigger

Crucial trade-off in algorithm complexity and performance under
strict inference time constraints

E.g. ATLAS/CMS each only keep about 1 in every 100 000 events,
and yet their data samples are each still about 20 PB/yr

* ML algorithms have already been used very successfully for rapid event
characterisation

 adoption depth vary across experiments, but the increasing event complexity
at HL-LHC will require more sophisticated ML solutions and its expansion to
more trigger levels

A critical part of this work will be to understand which ML
techniques allow us to maximally exploit future computing
architectures
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Trigger (cont’'d)

E.g. CMS employs ML in its trigger hardware to better estimate the
momentum of muons

* inputs to the algorithm are discretised to permit encoding the ML response in
a large look-up table that is programmed into FPGAs

E.g. LHCb, many of the reactions of greatest interest do not
produce striking signatures in the detector, making it necessary to
thoroughly analyse high-dimensional feature spaces in real time to

efficiently classify events
e LHCb used a BDT for 2 years, then a MatrixNet algorithm

* ML now almost ubiquitous in LHCb Trigger. 70% of all persistent data is
classified by ML algorithms. All charged-particle tracks are vetted by NNs.

* LHCb estimated that reaching the same sensitivity as a recent LHCb search for
the dark matter on 2016 data, would have required collecting data for 10 yrs

without the use of ML
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Tracking

Pattern recognition has always been a computationally challenging
Step

* e.g. the HL-LHC environment makes it an extremely challenging task

Adequate ML techniques may provide a solution that scales linearly
with LHC intensity.

Several efforts in the HEP community have started to investigate
sophisticated ML algorithms for track pattern recognition on many-
core processors.

No time to cover all this area in details..
just a few plots to highlight the complexity of the task
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Challenge yourself as a tracking system

Can you find a high
momentum particle?

travel in helical paths,
with the radius of the
helix proportional to
the particle momentum

Hint: charged particles
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Challenge yourself as a tracking system

Can you find a high
momentum particle?

S

o
Illllll'll"l]lllllllll"

global y (cm)

S

Track finding (a pattern
recognition problem) is
one of the most
computationally intense
event reconstruction
problems we have

:. "[ o '

And this example refers
actually to just ONE

(and relatively simple) -0
event..
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global x (cm)

* next..
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Real event displays (e.g. CMS)

Top: H in yy, around 20 PU

Right: H in VBF, 200 PU
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Computing resource optimisations

Industrial-scale data samples collected by e.g. LHC experiments produce
non-collisions metadata from which actionable insights can be extracted

* results of logging while running Run-1/2 operations of complex Workload
Management and Data Management systems

ML techniques have begun to play a crucial role in increasing the
efficiency of computing resource usage for LHC experiments since few
years

* e.g. predicting which data will be accessed the most to a-priori optimise data
storage at Grid computing centres via pre-placement, or perform WAN path
optimisation based on user access historical patterns (done/in-progress primarily, but
not only, in LHCb and CMS)

* e.g. monitoring data transfer latencies over complex network topologies, using ML
to identify problematic nodes and predict likely congestions (mostly by CMS)

Current approach is that ML outcome should inform the choices of the
computing operations teams

* this might be the basis of fully adaptive models in the next future
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Now to ~2020/22?

ML in HEP as the use of full high-dimensional feature space to train
cutting-edge ML algorithms (e.g. DNNSs)

As in computer vision and NLP, growing effort in HEP too to skip the
feature-engineering step. How well can we do using deeper networks and /

or special architectures?
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Do DNNs need us?

Does a DNN need high-level features like invariant masses, or can it just learn the
physics by itself from the 4-vectors (once it is given examples)?

* If a DNN using low-level features outperforms any selection based only on high-level features..

ML models with limited capacity to learn complex non-linear functions of the inputs
rely on painful manual construction of helpful non-linear feature combinations to guide
the shallow networks. But recent DL advancements allow to automatically discover
powerful non-linear feature combinations, thus providing better discrimination power.
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Higgs benchmark: comparison of bkg
rejection vs signal efficiency for the
traditional learning method (left) and
the DL method (right) using the low-
level features, the high-level features
and the complete set of features.

[arXiv:1402.4735]

Demonstrated improvements O(~10%) over the best current approaches

* DL techniques can provide powerful boosts to searches for exotic particle
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CNNs

CNNs are deep FFNNs with architecture inspired by the visual cortex

e CNN neurons seek local examples of translationally invariant features.
Convolutional filters locate patterns producing maps of simple features. Complex
features are built using many layers of simple feature maps.

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Used to solve a large variety of problems, including many in image
recognition

"ship
’ﬁr}plane
IBird
’iruck

’cat
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CNNs for neutrinos

MicroBooNE has managed to train CNNs that can locate neutrino interactions
within an event in the LArTPC, identify objects and assign pixels to them

* CNN perfect to identify objects in an image (translational invariant feature learning), and
sensitive volumes are large due characteristics of neutrino interaction with matter

[more at arXi1v:1611.05531]

wire number image from T. Wongjirad]

Similar work ongoing at:

* other neutrino experiments - e.g. NOVA [arXiV:1604.01444]

+ inspired to GoogleNet architecture. Improvement in the efficiency of selecting electron neutrinos by 40% with no loss
in purity. Used as event classifier in both an electron neutrino appearance search, and in a search for sterile neutrinos

[arX1v:1511.05190]
[arXiv:1603.09349]

SOSC 2019 - Bologna, 16-20 September 2019 36 D. Bonacorsi

* collider experiments in the area of jet physics



Does this remind you of something?

AACHEN=BONN-CERN-MLUNICH-OXFORD COLLABORATION

con e The data taking pace has changed

vp—D"ppu

* e.g. BEBCin 1973-83 equals to 6
seconds of (e.g.) LHCb today

* e.g. LHC sensor arrays’ 1 hr equals
to ~ Facebook data in 1 year

e algorithms running on large
computing farms took over long ago

Gisgt

. wm ¢ Still dealing with inability for
~* humans to visually inspect vast
amounts of data

Neutral currents in BEBC - WA21 CC Charm Event:
Roll 204, Frame 995 [CERN]

* Indeed, inability “for humans”..
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Arguing “HEP is different”..

Segmentation
in automotive applications

Farabet et al. ICML 2012, PAMI 2013

Nu: 0.090 Nu: 0.019 100 cm

<)
=

MicroBooNE examples of cosmic
bkg events with detected neutrino B e

bounding boxes with low scores.

MicroBooNE
Simulation + Data Overlay

[arXiv:1611.05531]
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Arguing “HEP is different”..

Airports detection
from satellite images
with CNNs

100 cm

[Remote Sens. 2017, 9, 1198; doi:10.3390/rs9111198 |
Nu: 0.019

w001

MicroBooNE examples of cosmic
bkg events with detected neutrino B e

bounding boxes with low scores.

MicroBooNE
Simulation + Data Overlay

[arXiv:1611.05531]
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More on particle ID and particle properties

In CALOs or TPCs the data can be represented as a 2D or 3D image
(even 4D, including timing information): the problem can be cast as
a computer vision task.

DL techniques in which DNNs are used to reconstruct images from
pixel intensities are good candidate to identity particles and extract
Many parameters

« promising DL architectures for these tasks include (at least) CNN, RNN

* e.g. LArTPCs is the chosen detection technology for DUNE (the new flagship
experiment in the neutrino programme). A proof of concept and comparison
of various DL architectures is expected to be finalised by 2020

* e.g. b-tagging in collider experiments. Techniques also from NLP are
expected to be finalised by 2020
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Simulation

Physics-based full simulation modelling in HEP (with GEANT 4 as the state of the
art) is very computationally demanding

* e.g. for LHC, the large samples to be generated for future experimental runs and the increase
in luminosity will exacerbate the problem, prohibitive also for GEANT

This already sparked the development of approximate, Fast Simulation solutions
to mitigate this computational complexity - especially relevant in calorimeter
showers simulations

Promising alternatives for Fast Simulation may be built on recent progress in high
fidelity fast generative models

* e.g. Generative Adversarial Networks (GANSs) and Variational AutoEncoders (VAEs)

* ability to sample high dimensional feature distributions by learning from existing data samples

A simplified first attempt at using such techniques in simulation saw orders of
magnitude increase in speed over existing Fast Simulation techniques, of which
all HEP experiments would largely benefit

* not yet reached the required accuracy, though

Perhaps more towards >2020, but promising.
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Simulation (cont'd)

E.g. exploit GANs, a 2-NN game where one maps noise to images, and the
other classifies the images as real vs fake (the best generator is the one that

maximally confuses its adversary)
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E.g. CaloGAN, a new FastSimulation technique, to simulate 3D HEP showers
in multi-layer ECAL systems with GANs

* basically, CaloGAN can generate the reconstructed Calo image using random noise,
skipping the GEANT and RECO steps - thus making it 10k faster than GEANT..
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EIEP e ot loptat 1oF ML

(might look ML-unrelated, but it deeply is)

HEP relies on the ROOT format for its data, whereas the ML
worldwide community has developed several other formats (often

associated with specific ML tools)

A desirable data format for offline usage with ML world-class
applications and frameworks should have the following attributes:

* high read-write speed for efficient training

* sparse readability without loading the entire dataset into RAM
* high compressibility

» widespread adoption by the ML community

The thorough evaluation of the different data formats and their
impact on ML performance for all HEP experiments is in progress.

 Strategy for bridging/migrating HEP formats to chosen ML format(s), or vice-
versa, are being envisioned.
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ML as-a-Service (MLaa$)

ML in production at scale is not only matter of software algorithms. Actually,
it is mostly matter of infrastructure.

MLaaS emerging also in HEP as a possible range of services that offer ML
tools as part of cloud computing services

* no need to install software or provision owned servers: the provider's data centres
handle the actual computation

Not at all widely used in HEP, but first interesting attempts by pioneering
experiments are appearing

* e.g. CMS has a working prototype of TensorFlow-as-a-service (TFaaS), demonstrated
for S/B discrimination in full hadronic top analyses, for event classification, etc. now
evolved in a larger scope project (i.e. not only TF, and more..)

Range of potential benefits:
* incremental training + a plethora of trained models loadable and servable upon request
* optimal for prototyping, use of checkpoints, etc

e an explorable “work model” for HEP: outsource the CS (ML) part of the work in a physics
analysis team to a skilled sub-set of members + cloud resources
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Detector anomaly detection

WARNING: just one example of unsupervised..

Data taking continuously monitored by physicists taking shifts to
monitor and assess the quality of the incoming data

* largely using reference histograms produced by experts

Automation may come from the whole class of “anomaly
detection” ML algorithms

» unsupervised algorithms able to monitoring many variables at the same time,
learn from data and produce an alert when deviations are observed

» synergy with predictive maintenance in industry: algorithms sensitive to
subtle signs forewarning of imminent failure, so that pre-emptive actions can

be scheduled

Work in progress by various LHC experiments

* and predictive maintenance of interest for LHC data centers, too
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HEP A(G)I?

Aka "send RAW data straight to some HEP Al and forget”?

meaning, is that an AGlI, actually?!

Agnostically, check the requirements we need to maintain:

ability to reformulate the problem (we do not know questions a-priori)
modularity, i.e. also reusability
interpretability / explainability

easy validation

IMO: a omni-comprehensive “"HEP AGI" is improbable any time soon
(or even in general). But few modular “intelligent” adaptive systems
based on advanced ML/DL able to make good use of Big Data and
focus on some cross-experiment HEP tasks is not unthinkable.

One open (key) aspect are e.g. the systematic uncertainties..
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Systematic uncertainties

We often do not know a-priori sizes and sources of systematic
uncertainty...

* How can a ML algorithm be robust against systematic effects in the training
samples, if we do not know how to transfer to it a knowledge we do not have?

Several approaches developed within HEP so far:

» define a physics-specific loss function that explicitly drives the ML optimisation
to a solution that is invariant under changes in some (possibly completely

unknown) features  [,,xV:1305.7248] [arXiV:1410.4140]

* enforce invariance using the adversarial network approach, where the
adversary now tries to guess the value of the latent parameter [,,xiV:1611.01046]

* parametrise latent parameters such that the NN learns to smoothly interpolate
itself as a function of the latent parameters [arXiV:1601.07913]
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Summary

The use of ML is becoming extremely present in HEP at large

* a rapidly evolving approach in HEP to characterising and describing data with the
potential to radically change how data is reduced and analysed

Applications domain varies:

« Some will qualitatively (directly) improve the physics reach of datasets. Others will
allow more efficient use of computing resources, thus (indirectly) extending the
physics reach of experiments

DL is starting to make a visible impact in HEP

* firstly, with HEP problems that are closely related to those commonly solved using DL

Collaboration with CS and synergy with the world-class ML community is
vital for HEP, and a challenge in itself for both sides!

« HEP has interesting features from a CS perspective (sparse data, irregular detector
geometries, heterogeneous information, systematics, ..)

* HEP should be open to other communities, and improve in how to formulate
problems in a way CS can understand and be attracted to
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Plenty of cutting-edge very interesting work and R&D that | did not
cover...

* (not exhaustive list!) hardware-side of choices, deployed computing
infrastructures for ML in HEP, tracking challenges, jet tagging with RNNs, deep
NNs on FPGAs, Deep Kalman Filters, compression using autoencoders,
sustainable MEM, and more...
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More on ML on HEP “Big Data”

REVIEW

https://doi.org/10.1038/541586-018-0361-2

Machine learning at the energy and
intensity frontiers of particle physics

Alexander Radovic'*, Mike Williams™*, David Rousseau’, Michael Kagan®, Daniele Bonacorsi®®, Alexander Himmel’,

Adam Aurisano®, Kazuhiro Terao® & Taritree Wongjirad®

Our knowledge of the fundamental particles of nature and their interactions is summarized by the standard model
of particle physics. Advancing our understanding in this field has required experiments that operate at ever higher
energies and intensities, which produce extremely large and information-rich data samples. The use of machine-

techniques is revolutionizing how we interpret these data samples, greatly increasing the discovery potential of present
and future experiments. Here we summarize the challenges and opportunities that come with the use of machine learning

at the frontiers of particle physics.

he standard model of particle physics is supported by an abun-

I dance of experimental evidence, yet we know that it cannot be a
complete theory of nature because, for example, it cannot incor-
porate gravity or explain dark matter. Furthermore, many properties of
known particles, including neutrinos and the Higgs boson, have not yet
been determined experimentally, and the way in which the emergent
properties of complex systems of fundamental particles arise from the

Big data at the LHC

The sensor arrays of the LHC experiments produce data at a rate of
about one petabyte per second. Even after drastic data reduction by
the custom-built electronics used to readout the sensor arrays, which
involves zero suppression of the sparse data streams and the use of
various custom compression algorithms, the data rates are still too

large to store the data indefinitely—as much as 50 terabytes per second,

Review work published on Nature (Aug 2018)
* bit.ly/ML-DBonacorsi
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Thanks for your attention



