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DISCLAIMER: major focus on (selected) challenges in Science(s).



Definition(s) ot Al/ML/DL

A pictorial definition by a company (Nvidia)
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Machine Learning

“Classical programming uses rules and data to produce answers.
Machine Learning uses data and answers to produce rules.”

— F Chollet

[ DISCLAIMER: just to set the context - more discussion on ML next week ]
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your favourite ML
model lives here!

ALL THE REST IS
L WHAT MAKES
ML EFFECTIVE!

Engineering Effort for Effective

« From “Hidden Technical Debt in Machifie Learning Systems”,
D. Sculley at al. (Google), paper at NMPS 2015

Monitoring
Configuration Data Collection Serving
Infrastructure
Ele - Process
Management Tools

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

In other words: schools like this one are THE RIGHT PLACE TO BE !
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Acceleration in the adoption of learning techniques

[ DISCLAIMER: also personal opinions here ]

A revive and acceleration happened recently, mainly because of
factors that | would list as:

* the raise of Big Data (both as a motivation, and as a helper!)
* the technology progresses (e.g. GPGPUs)

» “Democratisation” [*] of massive computing resources via Cloud approaches
[*] as most of these resources world-wide are far from being free-of-charge, and Big Data
companies implement carefully designed business models, this is debatably “democratic” in a
social sense. Not discussed here further, though: here we aim at stating that “in principle” you
have a “pay-and-access” option on not-on-premise resources, which did not exist before.

Today, it is a fact that AI/ML/DL are among the core
transformative technologies at the basis of most world-wide
activities aiming at extracting actionable insight from (Big) Data
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Expectations
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Intelligent systems are ubiquitous
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Intelligent systems in Industry (at large)

1/ Intelligent Data Processing

Algorithms that automatically analyse specitfic datasets to extract
information that are actionable. E.g.:

* predictive analytics, i.e. study data to provide forecast of a specific
phenomenon or process

4 type of Data Analytics

Descriptive analytics addresses the issue of
what happened.

Diagnostic analytics answers the question of
why something happened.

Predictive analytics describes what is likely to

rin happen.
Prescriptive analytics prescribes what step to
take to avoid a future problem.

* anomaly detection (e.g. fraud detection), i.e. identification of elements not
compatible with a “standard” expected model
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Intelligent systems in Industry (at large)

2/ Recommendation systems

Exploit the user-provided (directly or indirectly) information (e.g.

purchases, selections, ..) to suggest something the user might be
interested in.

* e.g. influence the “customer journey” in e-commerce via
suggestions to users

amazon NETFLI)




Intelligent systems in Industry (at large)

3/ Image Processing

Systems able to analyse static images
or videos, and detect objects, people, etc.

* e.g.video-surveillance (facial
recognition), security

4/ Autonomous Vehicles
Self-driving means of transportation

e more complex and wide that
image processing alone

* not only on roads, but
ships, drones, planes, ..

10 D. Bonacorsi



Example: computer vision

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

- Py

AN

ct‘
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Intelligent systems in Industry (at large)

5/ Natural Language Processing
Solutions that process (written or spoken) language
« passive: comprehension and elaboration of text (e.g. translation)

e active: virtual assistants or chatbots, able to activate services
upon human trigger via voice (e.g. front-level customer care
systems able to perform real-time sentiment analysis,
correlations, relevant data extraction, etc)

Text Natural

classification égggfaaffn
(" NNLP| O
Information B . " Natural language

_etieval g “._ understanding
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Intelligent systems in Industry (at large)

6/ Intelligent Objects/Robots

Objects able to analyse situations and environment and take autonomous
actions with no human intervention whatsoever.

 from “simple” intelligent objects (e.g. suitcase), to “sophisticated”
security devices

In industrial processes, Autonomous Robots are able to act just following a
basic task description and interaction capabilities (e.g. sensors) with a
relatively large set of different environments.

e many applications in automation engineering

i3 D. Bonacorsi



Intelligent systems in Industry (at large)

In summary...

In all the aforementioned cases, most common objectives are:

* costs reduction and processes improvement

e increased revenue

* support to decision processes

Corso CCR Big Data - Bologna, 9-13 September 2019 14 B Beraara



Intelligent systems in Science

Science needs conceptual representations of real phenomena

 — modelling

Operational value of a model relies in its predictive capabilities

e knowledge + data from past + math/stat = “forecast” the future

Every scientific model is - at best - just a decent approximation of
reality

* — model improvement and refinement (e.g. seek and adopt new techniques)

/'

This is where Machine Learning (ML) and Deep Learning (DL)
knock on the doors of Science(s)

Corso CCR Big Data - Bologna, 9-13 September 2019 15 D Bonace s



Which sciences?

Predictive models are crucial in natural sciences and formal sciences
» Medical Science (e.g. predicting a disease, drug discovery, ..)
* Chemistry (e.g. predicting chemical reactions, ..)
 Bioinformatics (e.g. predicting protein structures, mining omic data, ..)
» Geosciences (e.g. predicting a rare catastrophic event, ..)
* Physics (e.g. predicting - and enforcing - a discovery of a new particle)

« Many more would deserve a discussion (Astronomy, Astrophysics, Earth Sciences,
Climate )

In the following, focus on highlighting some level of similarity across
science challenges, and on how SDeCIfIC ML/DL tools on Big Data might
massively help a very diverse set of scientific disciplines

For attendants of this school: topics covered in this School can make a
huge difference in MANY Sciences. And this is happening already..

Corso CCR Big Data - Bologna, 9-13 September 2019 16 DeBonacetal



DISCLAIMER: I will quote various ML models and NN
architectures without going into the details of each.

More later in the week..

167



Medical @@ O
Science 6@8@80@

Credits: Luca Antiga (Orobix CEO) for inspiration and (rearranged) material
from his contribution at a Al for Industry event, Bologna, April 2017
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Medical image analysis

ANNALS OF MEDICINE APRIL 3, 2017 ISSUE

Al. VERSUS M.D.

What happens when diagnosis is automated?

[H1]

By Siddhartha Mukherjee

THE NEW YORKER

eoffrey Hinton, a computer scientist at the University of Toronto, speaks

less gently about the role that learning machines will play in clinical
medicine. Hinton—the great-great-grandson of George Boole, whose Boolean
algebra is a keystone of digital computing—has sometimes been called the father
of deep learning; it’s a topic he’s worked on since the mid-nineteen-seventies,

and many of his students have become principal architects of the field today.

“I think that if you work as a radiologist you are like Wile E. Coyote in the
cartoon,” Hinton told me. “You're already over the edge of the cliff, but you
haven't yet looked down. There’s no ground underneath.” Deep-learning systems
for breast and heart imaging have already been developed commercially. “It’s just
completely obvious that in five years deep learning is going to do better than
radiologists,” he went on. “It might be ten years. I said this at a hospital. It did not

go down too well.”

Hinton’s actual words, in that hospital talk, were blunt: “They should stop
training radiologists now.” When I brought up the challenge to Angela Lignelli-
Dipple, she pointed out that diagnostic radiologists aren’t merely engaged in yes-
no classification. They're not just locating the embolism that brought on a stroke.
They're noticing the small bleed elsewhere that might make it disastrous to use a
clot-busting drug; they’re picking up on an unexpected, maybe still

asymptomatic tumor.

Hinton now qualifies the provocation.

q F
“The role of radiologists will evolve from
doing perceptual things that could
probably be done by a highly trained
pigeon to doing far more cognitive
things,” he told me. His prognosis for

the future of automated medicine is

based on a simple principle: “Take any

“Pretty good. The ending was a bit predictable.”

old classification problem where you
have a lot of data, and it’s going to be
solved by deep learning. There’s going to
be thousands of applications of deep
learning.” He wants to use learning algorithms to read X-rays, CT scans, and
MRIs of every variety—and that’s just what he considers the near-term
prospects. In the future, he said, “learning algorithms will make pathological
diagnoses.” They might read Pap smears, listen to heart sounds, or predict

relapses in psychiatric patients.

Corso CCR Big Data - Bologna, 9-13 September 2019

G. Hinton, interviewed by The New Yorker

“| think that if you work as a radiologist you are
like Wile E. Coyote in the cartoon (..) You're
already over the edge of the cliff, but you
haven't yet looked down. There's no ground
underneath.”

“It's just completely obvious that in five years
deep learning is going to do better than
radiologists (..) It might be ten years. | said this
at a hospital. It did not go down too well.”

"They should stop training radiologists now (..)
The role of radiologists will evolve from doing
perceptual things that could probably be done
bv a hICIh|V trained pigeon to doing far more
cognitive things.”

DISCLAIMER: “views are not my own”
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Deep Learning roars

G. Litjens et al, “A Survey on Deep Learning in Medical Image Analysis”, Jun 2017 [H2]
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Vast set of application areas

Mammography Bra :,:J\f,si\sé/ Airways
Sl e
Diabetic Lung nodule
retinopathy classification

Breast cancer Bone
metastases suppression
detection
in lymph nodes
[H2]
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"Equivalence” demonstration in skin lesions

[1/2]

Demonstrated the equivalence between a DL-based system and a pool of experts in dermatology image classification

Squamous cell carcinomas

Melanomas

namre

® Epidermal benign

* Epidermal malignant
Melanocytic benign

® Melanocytic malignant

Basal cell carcinomas

At

A. Esteva et al, “Dermatologist-level classification of skin cancer with deep NN”, Feb 2017 [H3]

Corso CCR Big Data - Bologna, 9-13 September 2019
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"Equivalence” demonstration in skin lesions

“(...) Here we demonstrate classification of skin
lesions using a single CNN, trained end-to-end from
images directly, using only pixels and disease labels
as inputs. We train a CNN using a dataset of
129,450 clinical images - two orders of magnitude
larger than previous datasets - consisting of 2,032
different diseases. We test its performance against
21 board-certified dermatologists on biopsy-
proven clinical images with two critical binary
classification use cases: keratinocyte carcinomas
versus benign seborrheic keratoses; and malignant
melanomas versus benign nevi. The first case
represents the identification of the most common
cancers, the second represents the identification of
the deadliest skin cancer. The CNN achieves
performance on par with all tested experts across
both tasks, demonstrating an artificial intelligence
capable of classifying skin cancer with a level of
competence comparable to dermatologists.
Outfitted with deep neural networks, mobile devices
can potentially extend the reach of dermatologists
outside of the clinic. It is projected that 6.3 billion
smartphone subscriptions will exist by the year 2021
and can therefore potentially provide low-cost
universal access to vital diagnostic care (...)"

Corso CCR Big Data - Bologna, 9-13 September 2019

LETTER

[2/2]

namre

doi:10.1038/nature21056

Dermatologist-level classification of skin cancer
with deep neural networks

Andre Esteva'*, Brett Kuprel'*, Roberto A. Novoa®?, Justin Ko?, Susan M. Swetter?*, Helen M. Blau® & Sebastian Thrun®

Skm cancer, (he most common human malignancy’-?, is primarily
lly, beginning with an initial cllmca.l screening
and fol.lowed potentlally by dermoscopu: analysns a biopsy and
d classification of skin
lesions using images isa chal.lengmg task owing to the fine-grained
variability in the appearance of skin lesions. Deep convolutional
neural networks (CNNs)** show potential for general and highly
variable tasks across many fine-grained object categories®'’.
Here we demonstrate classification of skin lesions using a single
CNN, trained end-to-end from images directly, using only pixels
and disease labels as inputs. We train a CNN using a dataset of
129,450 clinical images—two orders of magnitude larger than
previous datasets'>—consisting of 2,032 different diseases. We
test its performance against 21 board-certified dermatologists on
biopsy-proven clinical images with two critical binary classification
use cases: keratinocyte carcinomas versus benign seborrheic
keratoses; and malignant melanomas versus benign nevi. The first
case represents the identification of the most common cancers, the
second represents the identification of the deadliest skin cancer.
The CNN achieves performance on par with all tested experts
across both tasks, demonstrating an artificial intelligence capable
of classifying skin cancer with a level of competence comparable to
dermatologists. Outfitted with deep neural networks, mobile devices
can potentially extend the reach of dermatologists outside of the
clinic. It is projected that 6.3 billion smartphone subscriptions will
exist by the year 2021 (ref. 13) and can therefore potentially provide
low-cost universal access to vital diagnostic care.
There are 5.4 million new cases of skin cancer in the United States?
every year. One in five Americans will be diagnosed with a cutaneous
l|-‘l-l ‘ I‘ ifetime, A nougn meianoma epresent Iewe a

images (for example, smartphone images) exhibit variability in factors
such as zoom, angle and lighting, making classification substantially
more challenging?>?‘. We overcome this challenge by using a data-
driven approach—1.41 million pre-training and training images
make classification robust to photographic variability. Many previous
techniques require extensive preprocessing, lesion segmentation and
extraction of domain-specific visual features before classification. By
contrast, our system requires no hand-crafted features; it is trained
end-to-end directly from image labels and raw pixels, with a single
network for both photographic and dermoscopic images. The existing
body of work uses small datasets of typically less than a thousand
images of skin lesions'®!®!%, which, as a result, do not generalize well
to new images. We demonstrate generalizable classification with a new
dermatologist-labelled dataset of 129,450 clinical images, including
3,374 dermoscopy images.

Deep learning algorithms, powered by advances in computation
and very large datasets?, have recently been shown to exceed human
performance in visual tasks such as playing Atari games?, strategic
board games like Go?” and object recognition®. In this paper we
outline the development of a CNN that matches the performance of
dermatologists at three key diagnostic tasks: melanoma classification,
melanoma classification using dermoscopy and carcinoma
classification. We restrict the comparisons to image-based classification.

We utilize a GoogleNet Inception v3 CNN architecture® that was pre-
trained on approximately 1.28 million images (1,000 object categories)
from the 2014 ImageNet Large Scale Visual Recognition Challenge®,
and train it on our dataset using transfer learning®®. Figure 1 shows the
working system. The CNN is trained using 757 disease classes. Our
dataset is composed of dermatologist-labelled images organized in a

ree- ed taxonomy of 2,032 diseases, in which the individua

[H3]

Interesting “equivalence” demo,
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but - still - humans are able to do this.
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Genetic mutation probability in prostate cancer [1/2]

“This is the first pipeline predicting gene mutation probability in cancer from digitised H&E-stained
microscopy slides. To predict whether or not the speckle-type POZ protein [SPOP] gene is mutated in
prostate cancer, the pipeline (i) identifies diagnostically salient slide regions, (ii) identifies the salient
region having the dominant tumor, and (iii) trains ensembles of binary classifiers that together predict a
confidence interval of mutation probability. Through deep learning on small datasets, this enables
automated histologic diagnoses based on probabilities of underlying molecular aberrations and finds
histologically similar patients by learned genetic-histologic relationships”

RIS ERENY EP RSN OEMER 20 SPOP mutants

REEE SRRV A RSPy =E
BELSUGREIN N BN 88 S8
gwgﬁ.’ﬁ;ﬁﬁﬁgﬁm.! 157 SPOP non-mutants
= T el W] Bl | R
Gl L AN ) Thaa g oL

S T g D5 R s = R S
s o .-'-;‘v" ¥ g el o “I g : - P - i !

A e ) e o S L ) R 7 O IRC 8 K R

3 : T O . “ v 7]
EMENEZ ST RS IR Source; TCGA cohort o
c JU 7 St ‘o e Sk frozen section images
LR UORNEE B RO MENRENE
G 208 R TR Y oY, %Y
RSN AR S

A.]. Schaumber et al, “H&E-stained Whole Slide Image Deep Learning Predicts
SPOP Mutation State in Prostate Cancer”. May 2017 [H4]
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Genetic mutation probability in prostate cancer [2/2]
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This is interesting because humans are NOT able to do this

* experts might develop “intuitions” of this kind after decades of experience.. but this might
become an automated system always available in support to clinical activities
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More: deep generative models [1/2]

DL methods involving discriminative models are most commonly
used (and successful) for classification tasks...

* based on back-propagation, dropout, piecewise linear units as activation
functions... well-behaved GD

... increasing demand for deep generative models

* i.e. ways to use DL to directly generate a model that could be successfully
applied to e.g. compression, denoising, inpainting and/or texture synthesis,
semi-supervised learning, unsupervised feature learning, ...

Corso CCR Big Data - Bologna, 9-13 September 2019 2 D Bonace s



More: deep generative models [2/2]

.. with the latter being a much bigger challenge than the former!

* initial generative models (e.g. restricted/deep Boltzmann machines, denoising
autoencoders, ..) are probabilistic and based on a parametric specification of a
probability distribution function. Training of such models requires the
maximization of the log-likelihood, a function that is usually computationally
intractable, with the additional complication of the activation functions..

* several alternative (deep) generative models have been suggested, which do
not require the explicit representation of the likelihood while being able to
generate samples from the desired distribution

Latest class of non-parametric approaches for deep generative
models is known as Generative Adversarial Network (GAN)

* generative models are estimated via an adversarial process. More in [IG1]

I. Goodfellow et al. “Generative Adversarial Nets” [IG1]
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Artificially-intelligent drug discovery engines

Oncotarget, 2017, Vol. 8, (No. 7), pp: 10883-10890

www.impactjournals.com/oncotarget/

Research Paper
The cornucopia of meaningful leads: Applying deep adversarial
autoencoders for new molecule development in oncology

Artur Kadurin'?34, Alexander Aliper?, Andrey Kazennov?’7, Polina Mamoshina??,
Quentin Vanhaelen?, Kuzma Khrabrov?, Alex Zhavoronkov?¢7

'search Department, Mail.Ru Group Ltd., Moscow, Russia

2Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins
University at Eastern, Baltimore, Maryland, USA

3Big Data and Text Analysis Laboratory, Kazan Federal University, Kazan, Republic of Tatarstan, Russia

4st. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences, Petersburg, Russia
5Department of Computer Science, University of Oxford, Oxford, UK

5The Biogerontology Research Foundation, Trevissome Park, Truro TR4 8UN, UK

"Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Correspondence fo: Alex Zhavoronkov, email: alex@insilicomedicine.com

Keywords: generative adversarian networks, adversarial autoencoder, deep learning, drug discovery, artificial intelligence
Received: June 14, 2016 Accepted: November 24, 2016 Published: December 22, 2016

ABSTRACT

Recent advances in deep learning and specifically in generative adversarial
networks have demonstrated surprising results in generating new images and videos
upon request even using natural language as input. In this paper we present the
first application of generative adversarial autoencoders (AAE) for generating novel
molecular fingerprints with a defined set of parameters. We developed a 7-layer AAE
architecture with the latent middle layer serving as a discriminator. As an input and
output the AAE uses a vector of binary fingerprints and concentration of the molecule.
In the latent layer we also introduced a neuron responsible for growth inhibition
percentage, which when negative indicates the reduction in the number of tumor cells
after the treatment. To train the AAE we used the NCI-60 cell line assay data for 6252
compounds profiled on MCF-7 cell line. The output of the AAE was used to screen 72
million compounds in PubChem and select candidate molecules with potential anti-
cancer properties. This approach is a proof of concept of an artificially-intelligent drug
discovery engine, where AAEs are used to generate new molecular fingerprints with
the desired molecular properties.

[1/2]

“Recent advances in deep learning
and specifically in GANs have
demonstrated surprising results in
generating new images and videos
upon request even using natural
language as input.”

“In this paper we present the first
application of generative
adversarial autoencoders (AAE)
for generating novel molecular
fingerprints with a defined set of
parameters. (...) This approach is a
proof of concept of an artificially-
intelligent drug discovery engine,
where AAEs are used to generate
new molecular fingerprints with the
desired molecular properties.

A. Kadurin et al, “The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule
development in oncology”, Dec 2016 [H5]
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Artiticially-intelligent drug discovery engines  [2/2]

AAE
architecture

Architecture of the 7-layer
Adversarial Autoencoder (AAE)
used in the aforementioned study.

é § L2
: Latent : L :

Encoder consists of 2 consequent
Fingerprint layers L1 and L2 with 128 and 64
neurons. In turn, decoder consists of
2 layers L'1 and L'2 comprising 64
and 128 neurons. Latent layer
consists of 5 neurons, one of which
Drug is Growth Inhibition percentage (GI)
. FHis and the other 4 are discriminated
Output layer with normal distribution.

Fingerprint

Drug
concentration

Input layer Encoder Decoder

(..) “As an input and output the AAE uses a vector of binary fingerprints and concentration of the
molecule. In the latent layer we also introduced a neuron responsible for growth inhibition percentage,
which when negative indicates the reduction in the number of tumor cells after the treatment. To train
the AAE we used the NCI-60 cell line assay data for 6252 compounds profiled on MCF-7 cell line. The
output of the AAE was used to screen 72 million compounds in PubChem and select candidate
molecules with potential anticancer properties.”
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One “non technical” thought (-> ethics)

Having an automated system has been a convenience so far

* and experts always dominated..

Now, not in the medical job at large, but in specific pattern
matching tasks, these systems easily beat humans.

Ethical implications?
» "is it ethical?”
* or, even, “will it become non-ethical not to use an automated system?”

Other implications

e Many! E.g. future of jobs. E.g. how will this transform regulatory rules, FDA, ...

(perhaps, to be seen as a human-machine collaboration and not a
competition..)
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FDA-approved DL systems -

Example. Artemys, first start-up that had
a DL-method (segmentation of cardiac
valves, ..) approved by FDA

» quoted here only for one reason: perhaps a milestone indicative of just one
company's momentum in applying Al to advance medical imaging accuracy

FDA 510(k) approval Nov’16 FDA 510(k) approval Feb’17
4D flow (velocity vectors + time) from Cardiac valves segmentation, validated
MRI scans on ~1k patients

[*] 510(k) = premarket submission made to FDA to demonstrate that the device to be marketed is at least as

safe and effective - that is, substantially equivalent - to a legally marketed device
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Qutlook on role(s) of ML in Medical Science

A (non exhaustive) list of applications of ML in Medical Science - for those interested:

Disease |dentification/Diagnosis = a quick example in this talk
Personalised Treatment/Behavioural Modification

Drug Discovery/Manufacturing = a quick example in this talk
Clinical Trial Research

Smart Electronic Health Records

Epidemic Outbreak Prediction

Radiology and Radiotherapy — a quick example in this talk

ML prospers with Big Data, and Medical science is yielding large amount of
heterogeneous data daily

R&D, physicians and clinics, patients, caregivers, etc.

Cialre:
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creation of new tools for physicians, consumers, ..
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Chemistry
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Predicting chemical reactions

Predicting the course and major products of arbitrary reactions is a
fundamental problem in Chemistry

» chemists address this in a variety of ways, from synthesis design to reaction
discovery

Basically, two different approaches:

* Write a system of rules (so-called “rule-based expert systems”)

+ limitation: very tedious, non-scalable, limited coverage

* Learn the rules from Big Data

= traditional inductive ML may not suffice, as you lack sufficient data to be implemented
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Chemistry towards ML [1/2]

E.g. “Reaction Explorer”, a system to predict organic chemical reactions based on
a knowledge base of >1500 manually composed reaction transformation rules.

Product prediction for a Diels-Alder N
reaction using the accompanying : [Cl]
“SMIRKS” transformation rule. s
B
. S
Huge expressive power of the rules to 4
enforce regioselectivity, stereospecificity,
stereoselectivity of the reaction (eg [*:10)/[CX3;$(*[O,N,S]):1]=[C:2]\-[C:3]=[CX3:4)/[*:11].
carbon 1 preferentially assumes an ortho | [*:12\[CX3:5]=[CX3:6]/[$(*=[O,N,S]),$(C#N):13]>>
position - itk respect to carbon 6, etc). [*:10][CX4;@:1]1-/[C2]=[C3\-[CX4;@@:4])([*:11])[CX4:@:S]([*:12])[CX4;@@:6]1[*:13]

A new method uses ML [C2]:

* describe single reactions as interactions between coarse approximations of molecular orbitals (MOs).
Use topological and physicochemical attributes as descriptors.

* Use an existing rule-based system (Reaction Explorer) to derive a restricted chemistry dataset consisting
of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with
2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps

* Use ML: formulate identifying productive mechanistic steps as a statistical ranking, information retrieval,
problem: given a set of reactants and a description of conditions, learn a ranking model over potential
filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products.
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Chemistry towards ML

Highly sensitive reactive site classifiers
are trained and used to filter out the vast
majority of unreactive sites, pruning the

A user inputs the
reactants and

[2/2]

conditions space of potential reactions.
| 0" - :OH Na
._r\/\/q. Na @ll . @.l . | '}‘Na‘ .
. + Na Na ) l’ ) . r £ B Na. 2
N 2
‘OH Na Filled Fllled p"\/\%) ’ :0f_Na
| Reactants J O N8
B DO Ne Lo ZE 8
= + By B + OH Na Br\}S/Qi " °
— Bl A0 Na || B i~ 0] Na . 6H Na
+ Std Conditons ' H\ “ss
Conditions ::QH Na :QH Na B'f\/d\l/é?' Na E\&\) Na N
Unfilled Unfilled O Na :OH Na
a. Input reactants b. Identify Filled/ c. Filter Reactive d. Combine Filled/ e. Rank Orbital
and conditions Unfilled MOs Sites Unfilled MOs Interactions

yt

Potential e- donors and acceptors
are identified using coarse

approximations of electron filled
and electron unfilled MOs.
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Reactions are

enumerated by pairing
filled and unfilled MOs.
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A ranking model is trained

and used to order the reactions,
where the best ranking one or few
represent the major products.
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Bioinformatics




Bioinformatics

“Bioinformatics” = answer biological questions using tools from
mathematics, statistics and computer science

 advanced computational tools = boost in collection and analysis of biological
data

Biological “sequences” represent a large portion of biological data

* large size of the sequences + numerous possible features = strong need of
powerful analysis methods and tools
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ML in Bioinformatics

EVOLUTION /V
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Very complex mapping of ML methods to biological tasks..
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ML in Genomics and Proteomics

Genomics

* one of the most important domains in bioinformatics, as genes contain all the information

+ From genome sequences, location and structure of the genes are extracted. The regulatory elements and non-
coding RNA genes are identified. Sequence information is also used for gene function and RNA secondary

structure prediction.

* Big (Bio-)data: # of sequences available is increasing exponentially. From 1982 to
present, the # of bases in GenBank has ~doubled every ~18 months. Large data volume

is richness for ML..

Proteomics

* proteins transform the information in the genes into life

* The goal is protein structure prediction: their 3D structure is a key feature in their
functionality (evolution, structure and function). But proteins are very complex
macromolecules with thousands of atoms and bounds. Hence, the number of possible
structures is huge, and protein structure prediction is a very complicated combinatorial
problem where optimisation techniques are required. This is where computational
methods are needed.

In both genomics and proteomics, ML techniques are applied for protein
function prediction
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Example: mining omic data

Most effective predictors of protein 3D structure (able e.g. to
capture secondary structures) nowadays are a combination of

methods

* Not only sequence profiles at the input, but also sequence similarity and
structural similarity (e.g. similarity to sequences in the Protein Data Bank used

to infer annotations at the output level), then you can use Bidirectional
Recursive Neural Networks

protein
sequences

UNIREF50

l

| Sequence
SimilaritV

PROFILpro

Machine Learning

R

oy
1

1D-BRNN

PDB + DSSP

:

Structuram |
Similarity

HOMOLpro

final
prediction

General workflow of (selected) predictors [B1]. Sequence and structural similarity analyses are

performed by stand-alone modules (those named

“*pro”) and BRNN models are trained to

predict the features from the profiles and combined in an ensemble
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ML on Microarrays and in Systems biology

Microarray:

* array as the best known (despite not the only one) domain where bio-data is
collected

» complex experimental data need to be pre-processed (i.e. modified to be
suitably used by ML algos), then the data analysis method depends on what it
is being looked for

* most typical ML applications are on expression pattern identification,
classification and genetic network induction

Systems biology:

 very complex to model the life processes that take place inside the cell

* ML helpful ingredients in modelling biological networks (especially genetic
networks), signal transduction networks and metabolic pathways
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Microarrays

R Genomic20K - Genomic Image of the Core's 20k human
n —

Eromn, Oligonucleotide microarray comparing MCF10 &
EiiiEitpiEiiiiigaEg , : :
Beiigigitegiesiest UACC1179 breast cell line expression profile)
ﬂl'i!lﬂ““l‘f‘l%;?&!l!i&;g;‘::

Example of DNA microarray data.
One measures how much (the colours) certain genes
are “expressed” in a group of patients.
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Which ML approach(es) for bioinformatics?

You find in literature application of:  (rot exhaustive lisy

Bayesian classifiers, logistic regression, discriminant analysis,
classification trees, nearest neighbour, neural networks, support
vector machines (SVM), ensembles of classifiers, partitional
clustering, hierarchical clustering, mixture models, hidden Markov
models, Bayesian networks and Gaussian networks, ..

Few examples:

* e.g. identification of specific biological sequence segments with NN, Bayesian
classifiers, decision trees, and SVM

» when standard ML approaches fail, focus goes to feature generation, feature
selection

* also, clustering algos are used to group structurally related biological
sequences

Big (bio)-data and ML/DL in Bioinformatics is a very active and
interesting field!
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(Geoscience

Corso CCR Big Data - Bologna, 9-13 September 2019 45



Geoscience(s)

Earth’'s major interacting components are complex dynamic systems

 e.g. lithosphere, biosphere, hydrosphere, and atmosphere

Their states perpetually keep changing in space and time, creating a
balance of mass and energy

e e.g., layers in oceans, ions in air, minerals and grains in rock, land covers on the
ground

All interact with each other through complex and dynamic
geoscience processes

* e.g. rain falling on Earth’s surface and nourishing the biomass; sediments
depositing on river banks and changing river course; magma erupting on sea
floor and forming islands..

(Big) Geo-data comes mainly from 2 broad categories of sources:
1. observational data collected via sensors (space, sea, land)

2. simulation data from physics-based models of the Earth system.
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Big (geo-)Data

Geosciences are a field of great societal relevance, requiring solutions to urgent
problems that humanity is facing

 impact of climate change; air pollution; increased risks to infrastructures by disasters (such as
hurricanes); modelling future availability and consumption of water, food, and mineral resources;
identifying factors responsible for earthquake, landslide, flood, and volcanic eruption

Research is extremely complex, as it is at the confluence of various disciplines

* e.g. physics, geology, hydrology, chemistry, biology, ecology..

The Big Data era impacted geosciences too, which became a data-rich field

* better sensing technologies (e.g., remote sensing satellites and deep sea drilling vessels)

» improvements in computational resources for running large-scale simulations of Earth system
models

* Internet-based democratisation of data, enabling collection, storage, processing of data on
crowd-sourced and distributed environments such as cloud platforms

Several unique challenges that are seldom found in other sciences, mostly related
to the typical sources of geoscience data and their properties. In this scenario, ML
offer immense potential to contribute to problems in Geosciences
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Hard to use ML on geo-data [1/2]

Several characteristics of geo-data and geoscience applications limit
the usefulness of traditional ML algos for knowledge discovery, e.g.:

the nature of geoscience processes

* objects with (e.g. waves, flows, ..). E.g. advanced fluid
segmentation and fluid feature characterisation are needed

 space-time structure. Land cover labels (e.g. forest, desert, urban, ..) require
high resolution in space, and can change over time. High correlations.

* high dimensionality. Earth system incredibly complex,
(e.g. detection of land cover changes requires analysis of
multiple remote sensing variables)

* rare processes. Most catastrophic events would be the most useful to predict.
But historical occurrences are few, hence
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Hard to use ML on geo-data [2/2]

geoscience data collection

* multi-resolution data. E.g. sources like satellite sensors or in-situ
measurements are associated to varying spatial and temporal
resolutions, sampling rate, accuracy, uncertainty.

* noise, incompleteness, and uncertainty in Data

scarcity of samples and ground truth.

« small sample size. Issue from both reliable sensor-based data (e.g. satellites only
since the 1970s), and rarity of some major events (landslides, tsunamis, forest
fires, M>6 earthquakes).

* paucity of labeled samples with gold-standard ground truth. High-quality
measurements need (e.g. low-flying airplanes), or
expensive and time-consuming field operations. In addition, some geoscience
processes (e.g. subsurface flow of water) do not have ground truth at all (so
complex that exact state of the system is never fully known). Underfitting vs
overfitting issues in ML.
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RPossible MIE directiions for Geosciences [1 /2]

1. Characterising Objects and Events

 characterise and identify objects (e.g. weather fronts, atmospheric rivers); analyse
patterns in geo-data objects to study events (e.g. tornado-genesis)

* beyond using hand-coded features (size, shape), ML can help in automated
detection from data with improved performance using pattern mining techniques,
provided that can account for the s+t properties of geo-data

= done e.g. for spatio-temporal patterns in sea surface height data [G2], resulting in the creation of a
global catalogue of ocean eddies

2. Estimating Geoscience Variables from Observations

» supervised ML can help to infer critical geoscience variables that are difficult to
monitor directly (e.g. use data about other variables collected via satellites and
ground-based sensors, or simulations). E.g. multi-task learning (MTL) is used (which
improve generalisation by leveraging the domain-specific information contained in
the training signals of related tasks)

moreilater

 to address the non-stationary nature of some geo-data (e.g. climate), online
machine learning is used - dynamically adapting to new patterns in the data - to
predict e.g. temperatures. This approach outperforms the traditional, non-adaptive
(multi-model) mean over expert predictors
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Baseline ML MTL

Performance improvement in estimating forest cover in 4 states
of Brazil (“green” is “better performance) [G3]
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RPossible ME directiions for Geosciences [2/2]

3. Long-term Forecasting of Geoscience Variables

» traditionally, run physics-based model simulations that encode geo-processes using state-based
dynamical systems (current state determined by previous plus observations). Now: attacking as a
time-series ML regression problem (e.g. hidden Markov models, ..)

* even more complex are long-term forecasts for rare events (due to few data, sparsity, etc). Promising
is transfer learning, as model training on a present task (with sufficient # of training samples) can be
used to improve prediction performance on a future task (with limited # of training samples)

4. Mining Relationships in Geoscience Data

» find relationship among different geo-physical processes. One class of such relationship in the climate

domain is the “teleconnections” (pairs of distant regions highly correlated in climate variables such as
sea level PorT)

* huge potential of data-driven approaches here, that can sift through vast volumes of observational
and model-based geoscience data and discover interesting patterns

5. Causal Discovery and Causal Attribution

« discover cause-effect relationships. Traditionally, causality tools are used, e.g. bivariate Granger

analysis or multi-variate Granger analysis using vector autoregression (VAR) models (the latter,
together with Pearl’s framework, not yet so common though)

* reinforcement learning and other stochastic dynamic programming approaches that can solve
decision problems with ambiguous risk are promising directions that geoscientists are pursuing
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Raise of DL in Geosciences

DL ability to automatically extract relevant features from the data

 huge potential in geoscience (difficult to otherwise build hand-coded features for
objects/events/relationships)

The space-time nature of geo-data raises some similarity with problems like
computer vision and speech recognition, where DL excels

e« — frameworks such CNNs and RNNs are used more and more
+ CNN already used for detecting extreme weather events from climate model simulations [G4]

= RNN-based frameworks (such as LSTM models) have been explored for mapping plantations in Southeast Asia
from remote sensing data [G5]

* DL systems explored also for downscaling outputs of Earth system models and
generating climate change projections at local scales [G6], and for classifying objects in
high-resolution satellite images

Warning: availability of large volumes of labeled data has been a key factor
behind the DL success. Paucity of labeled samples in geosciences is hence
an issues, limiting the effectiveness of traditional DL methods.

* need to develop novel DL frameworks for geoscience (e.g. using domain-specific
information of physical processes?)
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ORI

DISCLAIMER: focus mostly on High Energy Physics (HEP) with particle accelerators.
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Concluding remarks for science(s)

Science is a pool of application areas for ML/DL techniques

e itis an amazing one, indeed

ML-based methods stand as powerful tools in many disciplines

* more recently, DL started to become a game player in some
For the un-initiated, the technology poses significant difficulties

* A constant training path is one of the keys towards success

 Ability to match novel techniques with proper computing infrastructures is the key!

* A school like this one is an excellent leg in your BigData/ML/DL/DataScience trip!

Many challenges are just common across sciences..
* .. but every science have unique data and tasks, and very peculiar priorities
* .. and not all sciences are at the same level of advancement and tools adoption

A zoo of always-more-refined algos and techniques to learn!

e more in next slide on this

Corso CCR Big Data - Bologna, 9-13 September 2019 L D Bonace s



Frameworks and tools

Regardless of the science (or not!) you focus on, you will go through

one (or more) of these:
‘»’TY\“ ‘ eew‘rﬁhine learning in Python R

»
@X ne t TensorFlow J\Z
Keras theano Spr K CNTK

PYT6LRCH

Availability of world-class ML frameworks is encouraging cross-
discipline fertilisation

* scientists from different communities started to talk to each other, and learn
from each other's experiences - like you in this room this week!

* this might be tough, but will eventually be VERY GOOD for your skills portfolio

Corso CCR Big Data - Bologna, 9-13 September 2019 A D Bonace s



What should you aim at?!

More similarity in tools/techniques than in applications themselves

o itis like learning a language: it builds bridges to/from other communities

If you e.g. gain experience on one class of algos..

* .. then it will be easier to become expert on neighbouring classes of algos

if you become confident in a ML/DL framework for one application..

* .. then it will be easier to use that experience in other application domains

So, get started, get solid, and explore!

Both Industry and Science welcome BigData/ML/DL workers/
experts, and you are guaranteed that you will never run out of
problems to solvel!
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Thanks for the attention.

Enjoy this week!
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