

MAGIC + LST simulations

F. Di Pierro^{*1}, L. Arrabito², A. Baquero Larriva³, A. Berti¹, J. Bregeon², D. Depaoli^{1,4}, D. Dominis Prester⁵, R. Lopez Coto⁶, M. Manganaro⁵, S. Mićanović⁵, A. Moralejo⁷, Y. Ohtani ⁸, L. Saha³, J. Sitarek⁹, Y. Suda¹⁰, T. Terzić⁵, I. Vovk¹⁰, T. Vuillaume¹¹ for the CTA Consortium[†]

¹INFN Sezione di Torino, via P. Giuria, 1 - 10125 Torino, Italy

²Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS/IN2P3,

France

³Universidad Complutense de Madrid, Avda Complutense s/n E-28040 Madrid, Spain

⁴Università degli Studi di Torino, Dipartimento di Fisica, via P. Giuria, 1 - 10125 Torino, Italy

⁵University of Rijeka, Department of Physics, Ul. Radmile Matejcic 2, HR-51000 Rijeka,

Croatia

⁶INFN Sezione di Padova, Via Marzolo, 8 - 35131 Padova, Italy

⁷Institut de Fisica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology,

Campus UAB, 08193 Bellaterra (Barcelona), Spain

⁸ICRR, The University of Tokyo, Japan

⁹Department of Astrophysics, The University of Łódź, ul. Pomorska 149/153, 90-236 Łódź, Poland

¹⁰Max Planck Institute for Physics, München, Germany ¹¹LAPP, CNRS, Université Savoie Mont-Blanc, France

Introduction

1. Goals of the production

- i. To estimate the performance of combined MAGIC and LST1 observations
 - Check the simulation and analysis pipelines comparing these results and MAGIC known performance
- ii. To test cross-calibration strategies (MAGIC LST1)
- 2. Redmine issue, to follow the task:
 - i. https://forge.in2p3.fr/issues/35807
- 3. Production (corsika, simtel) and Analysis (chimp/mars) using **Dirac** on CTA VO resources

CORSIKA

- 1. Layout (4 LSTs, 2 MAGIC, central MST)
- 2. Zenith angle, THETAP = 20°
- 3. Azimuth, PHIP = 0° 180° (pointing S and N)

Primary	Gamma	Proton	Electron
Emin [GeV]	3	4	3
Emax [GeV]	330E3	600E3	330E3
Eslope	-2	-2	-2
CSCAT [m], radius	700	1000	1000
NSCAT	5	10	10
Viewcone [deg], radius	0	6	6
Nshow/job	5E4	1E5	1E5
Jobs	~2200	~12000	~10000

- Files can be found here: /vo.cta.in2p3.fr/MC/PROD4/LaPalma/
- Occupied Disk Volume: ~280 TB (all files, 2 pointings, gamma-diffuse)

CTA ITA General Meeting, 2019/11/18

sim_telarray

1. Version: /vo.cta.in2p3.fr/software/corsika_simhessarray/2018-11-07/

2. Configurations:

/vo.cta.in2p3.fr/user/f/fdipierro/mycfg_simtel_magic_lst_test.tar.gz

- i. LST: CTA-ULTRA6-LST-40ns.cfg (same as prod3 CTA-ULTRA6-LST.cfg, but with fadc_sum_bins = 40 instead of 30 [ns])
- ii. MAGIC1 and MAGIC2 (CTA-PROD4-MAGIC1.cfg and CTA-PROD4-MAGIC2.cfg, produced by Sasa, Yoshiki, Yusuke, Ievgen, Julian, et al.).

See Sasa's slides for the details: https://forge.in2p3.fr/attachments/download/62474/LST_Analysis _Bootcamp_2018_Micanovic.pdf

- iii. Central MST: CTA-ULTRA6-MST-NectarCam.cfg
- **3. Trigger**: all mono triggers (possible cross-checks with cta-lstchain)
- 4. Files are here:
 - i. /vo.cta.in2p3.fr/user/f/fdipierro/simtel/

sim_telarray

- Camera displays for an event (gamma, E0 = 94 GeV)
- 2. Pixel Charge (left), Pixel Timing (right)

CTA ITA General Meeting, 2019/11/18

Chimp/MARS

- Versions: /cvmfs/cta.in2p3.fr/software/sl6-gcc44/simulations/mars/2019-04-19/
 - i. ROOT: 5.34.38
 - ii. MARS: V2-19-3
 - iii. Chimp: current CVS version + small modification (MAGIC calibration scale):

/vo.cta.in2p3.fr/user/f/fdipierro/Software/CChimp_20190419.tar.gz

- **2. Chimp** (calibration, image cleaning, conversion to root)
 - i. final_clean_levels: MAGIC (6,3), LST (4,2) (*LST calib scale unchanged, same as prod3b)
- 3. Files are:
 - i. /vo.cta.in2p3.fr/user/f/fdipierro/chimp/

MARS Analysis

(credits Cumani, Hassan, Moralejo)

i. Several sublayouts (e.g.: M1 + M2, 2-3-4 LSTs, 2 MAGIC + LST1, MAGIC+LST1-2, 2 MAGIC + MST, All,...)

CTA ITA General Meeting, 2019/11/18

Results

- 1. Shown for "average" pointing
- 2. Comparison with prod3b results
- 3. Comparison of MAGIC simulated sensitivity with measured one
- 4. Combined MAGIC-LST1 observations' performance
 - i. Two different triggers studied: "any 2 out of 3" (hardware intervention needed); "both MAGIC tels" (combined events using time tag)
 - ii. Analysis cut: n images ≥ 2, image c.o.g within 0.8*camera radius, image size > 50 pe

Comparison with prod3b

CTA ITA General Meeting, 2019/11/18

Comparison with prod3b and CTA-S

CTA ITA General Meeting, 2019/11/18

3HB9-LST = prod3 Paranal

Comparison MAGIC sim. result and literature sensitivity

 First MC production including MAGIC: good independent validation of MC pipeline. Implemented MAGIC simulation is reliable.

CTA ITA General Meeting, 2019/11/18

Combined MAGIC-LST1 performance

- MAGIC + LST1 have significantly better sensitivity than MAGIC alone (on average factor ~1.5 better)
- MAGIC + LST1 simulated including MAGIC HW trigger

CTA ITA General Meeting, 2019/11/18

Combined MAGIC-LST1: trigger any2/3 or MAGIC stereo

- MAGIC HW-stereo trigger (so sw-combined with LST1)
- ANY 2 out of 3 telescopes (so hw-combined with LST1)

CTA ITA General Meeting, 2019/11/18

Shorter Observations (5h)

CTA ITA General Meeting, 2019/11/18

Core distribution: MAGIC, MAGIC-LST1

MAGIC+LST1 (Magic HW trigger)

True Core, all events

True core positions (events passing trigger and image quality cuts)

CTA ITA General Meeting, 2019/11/18

F. Di Pierro5

MAGIC

Core distribution: MAGIC, MAGIC-LST1

MAGIC

Reco Core, all events

MAGIC+LST1 (Magic HW trigger)

Reco Core, all events

 Reconstructed core positions (events passing trigger and image quality cuts)

CTA ITA General Meeting, 2019/11/18

Core distribution: MAGIC-LST1 (sw-hw trigger)

True Core, all events

MAGIC+LST1 (any 2/3)

True core positions (events passing trigger and image quality cuts)

CTA ITA General Meeting, 2019/11/18

Conclusions

- 1. MARS analysis of MAGIC+LSTs production: done
- 2. Cross-checks (prod3b, MAGIC literature): successful
- 3. Combined MAGIC+LST1 performance: estimated
 - i. both for sw (time tag) trigger and for really combined (2/3) trigger.

CTA ITA General Meeting, 2019/11/18

Combined MAGIC-LST1 performance

 The number of telescopes is the key factor (as expected), 2 LSTs have better sensitivity than MAGIC, 3 LSTs better than MAGIC+LST1

CTA ITA General Meeting, 2019/11/18

peak 72424.1819 [sec] < time-offset < 72424.1821 [sec] 180

2. Crab Campaign starting in the next days

Towards MAGIC-LST Real Data

160

- 1. Mrk 501 joint observations in August: coincidences from event time stamps at $\sim 50 \text{ Hz}$
 - i. By Yoshiki Ohtani. Found a time drift between MAGIC and LST1 timing (new GPS going to be installed at LST1)

Towards MAGIC-LST Real Data

1. What we are doing now:

- i. Analyzing MAGIC real data with ctapipe/protopipe
 - Converter MAGIC calibarted data to ctapipe-compliant format developed by levgen Vovk

ii. Protopipe: new pipeline for stereo analysis, based on ctapipe, developed by Michele Peresano

Towards MAGIC-LST Real Data

- 1. What we are doing now:
 - i. Analysing LST1 data with cta-lstchain
 - ii. Data at IT-container (then trasferred to PIC and CNAF)
- 2. Next steps
 - i. MAGIC LST1 cross-calibration
 - ii. To merge MAGIC LST1 data, to analyze them for combined analysis with protopipe.

INFN Computing & Data 2020

- 1. 2020 allocated resources: 1.5 PB , 5296 TB Disk, 400 TB tape.
- 2. Working at CNAF (see Vincenzo's talk)
 - Request account: https://www.cnaf.infn.it/utenti-faq/
 - Support: user-support@lists.cnaf.infn.it
 - Disk for "farm" users (~80 TB): /storage/gpfs_data/ctalocal/
 - Disk for "GRID" users: /storage/gpfs_data/ctadisk/
 - Common sw: /opt/exp_software/cta/
- 3. CNAF as OFFSITE Data center for LST-1 (see Lisa's talk)
- 4. New mailing list: computing-info@cta-observatory.org
- 5. Next CTA Meeting: CTAO Archive Workshop, Desy, 27-29 January 2019