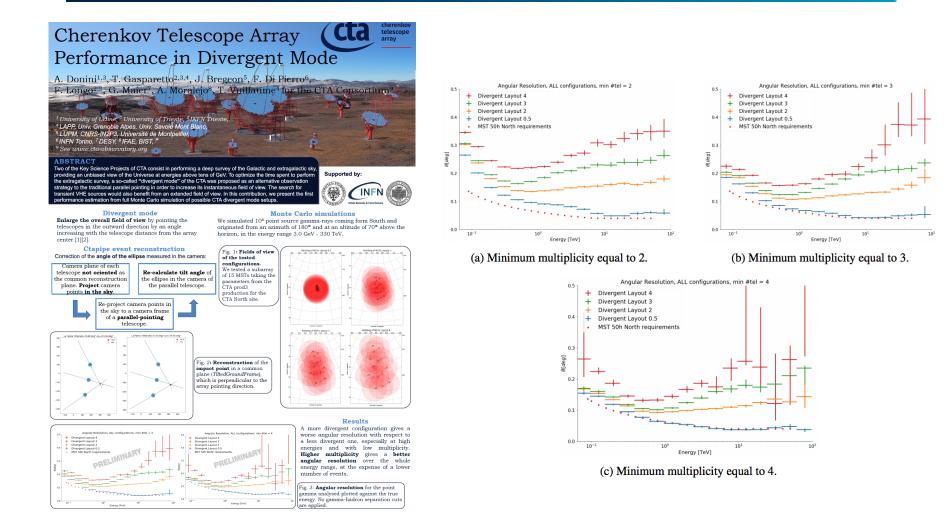


Divergent Pointing Simulations and Analysis

Alice Donini, F. Longo, T. Gasparetto

INFN CTA Meeting – Padova


Where were we? (Lugano meeting)

- Divergent Pointing Action 1:
 - Generate MC data in divergent mode
 - First data sample available on GRID
 - Massive production to be discussed
 - First Test Layout (La Palma, Divergent MST, parallel LSTs, z20, South Pointing)
 - 1000 files of gamma and protons
- Divergent Pointing Action 2:
 - Provide documentation on redmine on existing analysis methods on divergent pointing reconstruction
 - <u>Redmine page</u>
 - ICRC proceedings
- Divergent Pointing Action 3:
 - Provide first analysis of divergent pointing events
 - No more development on EvDisplay
 - ctapipe development
- Divergent Pointing Action 4:
 - Keep updated the requirements for the Divergent Pointing.
 - IRF production with full ctapipe chain to be started
 - Discussion with several WGs (EGAL, Transients, DM)
- Divergent Pointing Action 5
 - Develop the ToyMC for Divergent Analysis.
 - To be restarted to test more complex configurations
 - Important for CTAO operations

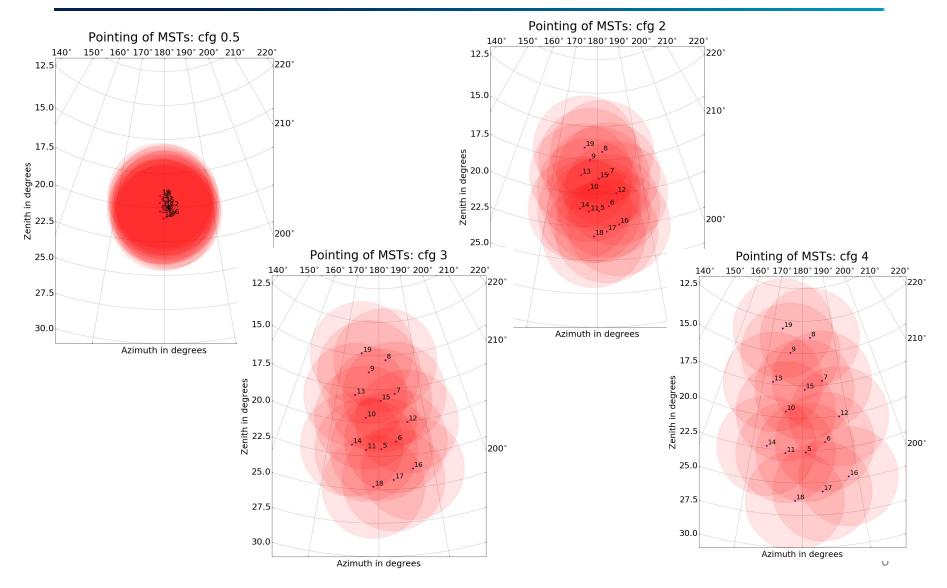
New Documentation – ICRC poster

The Cherenkov Telescope Array Performance in Divergent Mode, arxiv:1907.07978 ₃

Were were we?(Bologna meeting)

- Divergent Pointing Action 1:
 - Generate MC data in divergent mode
 - First data sample available on GRID
 - Massive production to be discussed
 - First Test Layout (La Palma, Divergent MST, parallel LSTs, z20, South Pointing)
 - 1000 files of gamma and protons
 - New Production ready
- Divergent Pointing Action 2:
 - Provide documentation on redmine on existing analysis methods on divergent pointing reconstruction
 - <u>Redmine page</u>
 - ICRC proceedings
- Divergent Pointing Action 3:
 - Provide first analysis of divergent pointing events
 - ctapipe development
 - Divergent mode reconstruction implemented in ctapipe
 - Initial activites with protopipe
- Divergent Pointing Action 4:
 - Keep updated the requirements for the Divergent Pointing.
 - IRF production with protopipe chain started
 - Discussion with several WGs (EGAL, Transients, DM)
- Divergent Pointing Action 5
 - Develop the ToyMC for Divergent Analysis.
 - Test more complex configurations
 - Important for CTAO operations
 - Check a new paper ...

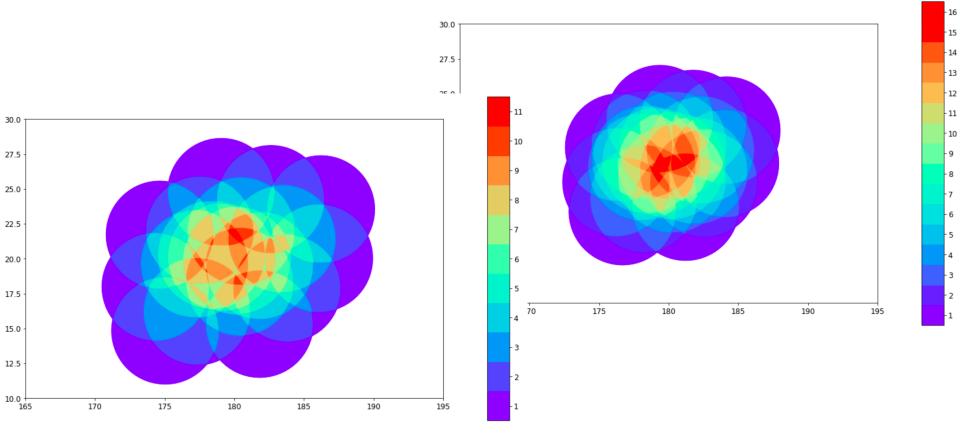
Where are we now? - Simulations


- New productions available for gamma, protons and electron, 4 different configuration:
 - http://vo.cta.in2p3.fr/MC/PROD3/LaPalma/gamma/simtel/1975/Data/000xxx/
 - http://vo.cta.in2p3.fr/MC/PROD3/LaPalma/gamma/simtel/1976/Data/000xxx/
 - http://vo.cta.in2p3.fr/MC/PROD3/LaPalma/gamma/simtel/1976/Data/000xxx/
 - http://vo.cta.in2p3.fr/MC/PROD3/LaPalma/gamma/simtel/1978/Data/000xxx/
- Divergent mode reconstruction officially implemented in ctapipe

```
def __init__(self, config=None, parent=None, **kwargs):
    super().__init__(config=config, parent=parent, **kwargs)
    self.hillas_planes = {}
    self.divergent_mode = False
    self.corrected_angle_dict = {}
```

```
def predict(self, hillas_dict, inst, array_pointing, telescopes_pointings=None):
```

Pointing configurations

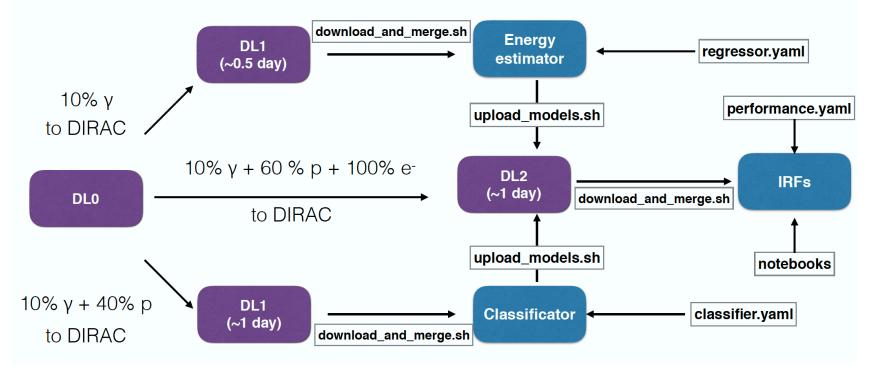


Pointing map tool

- Development of a pointing map tool started
- Based on <u>telescope multiplicity</u>

• Scripts to create DL1 files using ctapipe methods

ree of databases		• 😐 🕒		🧾 dl1 S	torage of HillasPa	rame	eter	sContainer,Lea	kageContair	ner,Ext	ralmageInfo						
dl1_proton_20deg_0deg_run50001		event_id	intensity	kurtosis	leakage1_inten	sit le	aka	ge1_pixel leal	age2_intensit	leaka	ge2_pixel	ength	0	os_id	р	hi	
 events true 		0 2319	127.90290	2.09840563	3 0.	0		0.		0.		0.03878′	115 5	0001	9	94.0252816	
dl1		1 2319	106.32009	2.91149715	5 0.	0		0.		0.		0.038206	668 5	0001	9	95.5062168	
simulation		20611	205.4468054	2.40924259	9 0.	0		0.		0.		0.043976	533 5	0001	-	3.7431536	
 instrument subarray 		3 20611	153.39223	2.40852639	9 0.	0		0.		0.		0.059497	716 5	0001	6	6.88380259	
📕 layouttable_column_meta		4 20611	216.18781	2.07614973	3 0.	0		0.		0.		0.06613	507 5	0001	-	15.246161	
v 🖶 telescope		₅ 20611	172.92658	2.37160091	1 0.	0		0.		0.		0.053614	439 5	0001	4	.26256545	
optics							•) 🔴 🌒 🥅	recons	tructe	d Storage of	Reconstr	uctedSh	owerCor	ntainer,E	ventInfo	
<pre>iiii opticstable_column_meta iiiiii camera</pre>		• • = 1	true Storage of M	CEventCentein	or Eventlafe			alt	alt_uncert		average_inte	ensity az		az_u	uncert	core_uncert	core_x
LSTCamtable_column		alt		core_x	core_y	ene	c	69.7736457	1 8. 537736	160	117.1114	938	54.8191	2 nan	1	nan	-193.0
SCTCam LSTCam	0	70.76235807	18.05770365	80.75751495	180.71372	0.0	1	73.5364693			163.6241	00.	770546	08 nan	ı	nan	5.2244
FlashCamtable_colum FlashCam	1	74.02791932	356.70141	151.51998	-351.01599	1.0	2	70.4317960	3 1.72078	8751	80.31938	091 -6.	073776	55 nan	ı	nan	201.53
SCTCamtable_column NectarCam	2	73.22177941	357.17747	551.13708	-94.502159	0.5	3	3 74.3254437	2 1.28450	68	293.7471	65.	777915	05 nan	ı	nan	226.92
RectarCamtable_colui	3	73.22177941	357.17747	145.08686	-389.95852	0.5	4	70.4207298	6 0.81539	9144	237.8218	24.	436433	02 nan	ı	nan	128.62
	4	71.94713634	359.9378553	421.68746	319.83441	0.5	5	5 68.0071862	2.26571	756	446.7332	238	58.5937	0 nan	I	nan	179.57
	5	70.79859905	355.78438	542.1071167	-582.59088	0.0	6	5 70.2592172	7 1.16516	6513	277.5130	162 -5.	399573	81 nan	ı	nan	-470.3
	6	70.40632762	353.62383	-415.51004	-509.83346	1.7	7	69.9931810	6 0.76654	533	226.3459	35.	664662	15 nan	ı	nan	578.16
	7	70.40632762	353.62383	619.88739	-143.39294	1.7	8	70.3555516	1 2.30832	2651	920.7947	76.	194759	3 nan	ı	nan	150.79
	8	70.40632762	353.62383	166.96476	-384.77905	1.7	g	72.5871440	6 1.13641	77	154.2201	533 -3.	874546	1 nan	ı	nan	-116.9
	9	70.40632762	353.62383	-486.60446	-426.19311	1.7	10	71.2292965	9 0.04903	828	1170.932	710	0.23905	4 nan	ı	nan	-314.6
		70 40632762	353 62383	-405 47735	488 40628	1.7%	11	74.0423286	1 0.50895	5313	106.8855	838	57.2248	8 nan	ı	nan	-68.65
							12	65.9580023	1 1.34461	061	1204.100	81.	384095	33 nan	ı	nan	160.12
							13	68.7140968	6 0.		105.1187	534	14.9205	5 nan	1	nan	85.35
								70 0501000	1 0		160 //1/	1 2	201660	77 000		non	104 4



- New pipeline prototype for CTA based on ctapipe library
- Installed and tested successfully at CNAF
- The pipeline provides scripts to:
 - Process simtelarray files and write DL1 or DL2 tables
 - Build regression or classification models with diagnostic plots
 - Estimate the best cutoffs which gives the minimal sensitivy reachable in a given amount of time
 - Produce instrument response functions (IRF), including sensitivity

Protopipe - Analysis

In the following : 'to DIRAC' requires 'grid.yaml' and 'analysis.yaml'

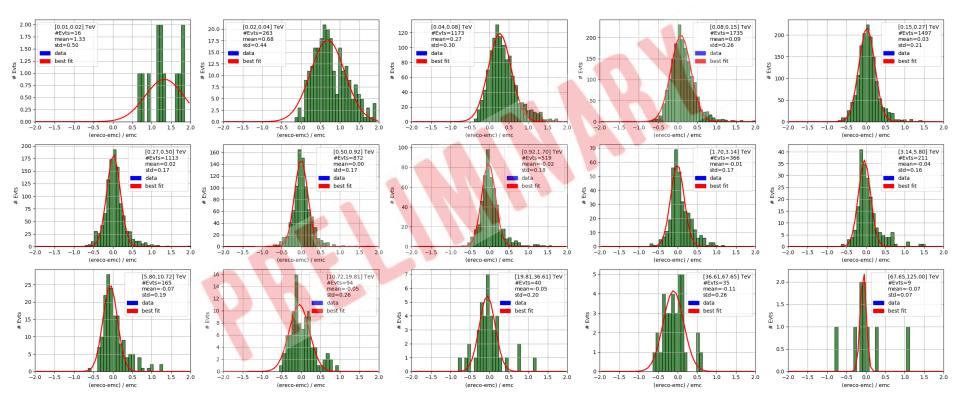
M. Peresano talk in Lugano: <u>https://indico.cta-observatory.org/event/1995/</u>

• **R0 (raw low-level)**: merged raw data

- **R1 (raw common)**: calibrated data
- **DL0 (raw archived)**: data volume reduced data
- **DL1 (processed)**: final calibrated image

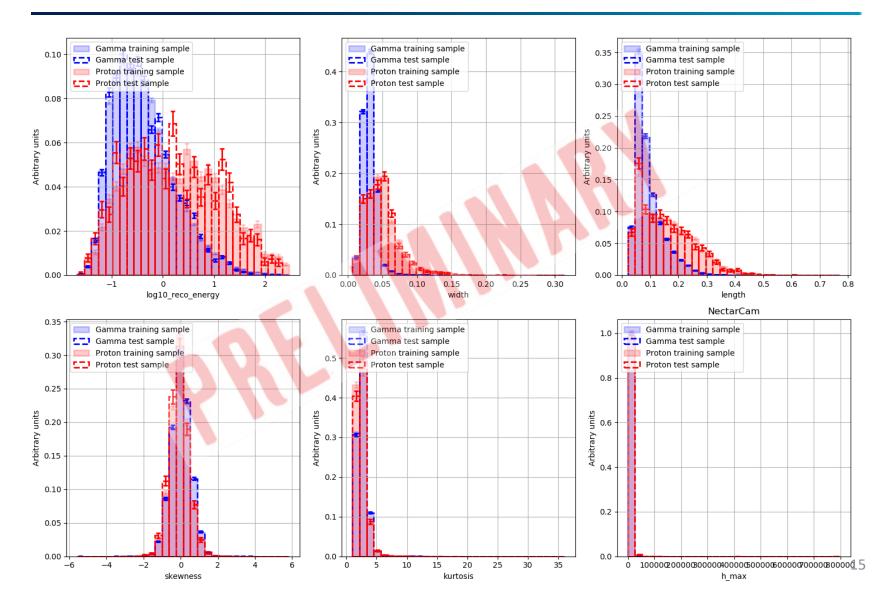
Waveform cleaning and charge extraction

- **DL2 (reconstructed)**: reconstructed shower information
- DL3 (IRFs)

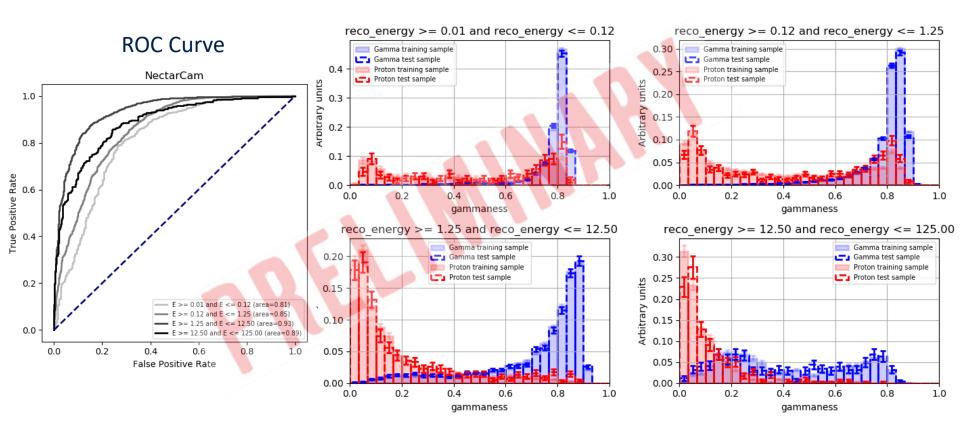

Protopipe – DL1 files

Tree of databases				fe	ature_events_Ne	ctarCam				>
dl1_tail_gamma_merged.h5 feature events NectarCam	reco_core_x	reco_core_y	mc_h_first_int 25941.08789		offset	alt 69.876305	az	reco_energy_tel		local_distance_r 0.14495607
feature_events_LSTCam	0 -71.53791159				20.123692		-180.99782		0.24782606	
🛐 Query results	1 -7.4624926	-203.25836742	41002.49609	199.09091	19.914827	70.08517	-179.3799	nan	0.37362293	0.8793712
	2 -7.4624926		41002.49609		19.914827	70.08517	-179.3799	nan	0.378363	0.6459295
	3 -13.21989241	114.09831998	28984.04492	242.23302	20.020996	69.979004	-180.448	nan	0.45906695	0.73455995
	4 -13.21989241	114.09831998	28984.04492	242.23302	20.020996	69.979004	-180.448	nan	0.35581092	0.72107863
		114.09831998		242.23302	20.020996	69.979004	-180.448	nan	0.31486412	0.6559748
	6 -13.21989241	114.09831998	28984.04492	242.23302	20.020996	69.979004	-180.448	nan	0.2497232	0.63434446
	/	114.09831998		242.23302	20.020996	69.979004	-180.448	nan	0.51548356	0.8967686
	8 -13.21989241	114.09831998	28984.04492	242.23302	20.020996	69.979004	-180.448	nan	0.48860711	0.87239414
	-	114.09831998	28984.04492	242.23302	20.020996	69.979004	-180.448	nan	0.39187579	0.36265346
	10 -2.49844902	209.0851241	28984.04492	242.23302	20.064571	69.935425	-180.25046	nan	0.3086075	0.7333779
	11 -2.49844902	209.0851241	28984.04492	242.23302	20.064571	69.935425	-180.25046	nan	0.47872405	0.62459415
	12 -2.49844902	209.0851241	28984.04492	242.23302	20.064571	69.935425	-180.25046	nan	0.29736693	0.7582996
	13 -2.49844902	209.0851241	28984.04492	242.23302	20.064571	69.935425	-180.25046	nan	0.29569505	0.42051655
	14 -254.6080660				20.029428	69.970566	-180.34224	nan	0.18730354	0.13684879
	15 -254.6080660				20.029428	69.970566	-180.34224	nan	0.41879685	0.4570526
	16 -105.9462405	8 -403.77413718	21540.13671	238.75	19.990084	70.00991	-179.64384	nan	0.49684447	0.20813744
	, -105.9462405	8 -403.77413718	21540.13671	238.75	19.990084	70.00991	-179.64384	nan	0.22076276	0.56596327

Protopipe – Energy model



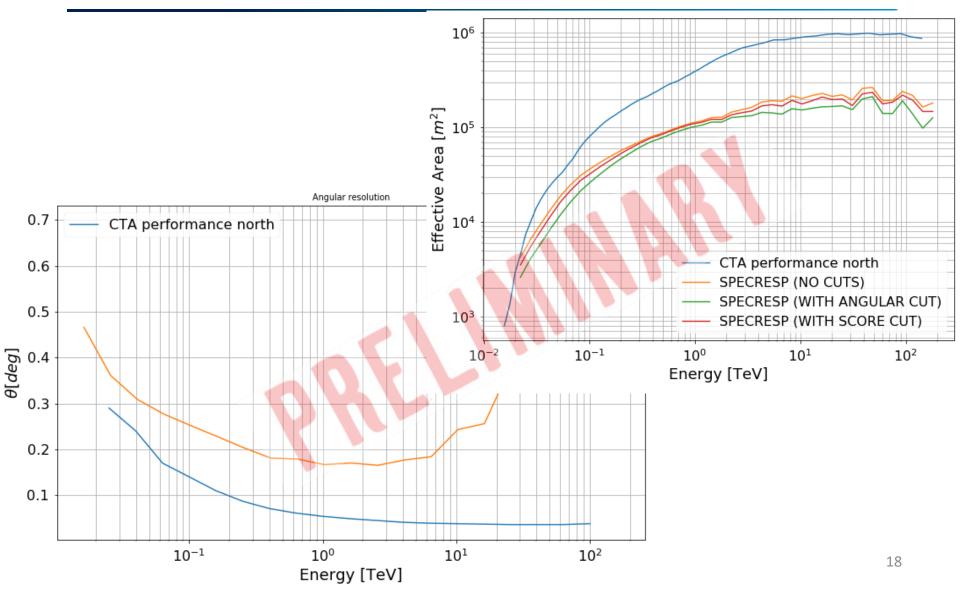
Protopipe – DL1 files


Tree of databases		feature_events_NectarCam											
💮 dl1_tail_gamma_merged.h5		reco_core_x	reco_core_y	mc_h_first_int	mc_x_max	offset	alt	az	reco_energy_te	ellipticity_reco	local_distance	r s	
<pre>feature_events_NectarCam feature_events_LSTCam</pre>		108.5727527	-362.29807406	20605.12109	282.	19.786001	70.214	-180.43802	0.26190853	0.47061527	0.7139324	-	
🕅 Query results		1 108.5727527		20605.12109		19.786001	70.214	-180.43802	0.33425915	0.29722996	0.30471656		
		302.36951659	-285.25892689	20605.12109	282.	19.924479	70.07552	-180.05418	0.18886755	0.35519317	0.4007813	_	
	3	302.36951659	-285.25892689	20605.12109	282.	19.924479	70.07552	-180.05418	0.40064406	0.27823201	0.8019199		
		4 -73.57087551	301.74671209	33695.5625	248.33333	20.037882	69.96211	-180.14876	1.6949662	0.19260808	0.7445626		
		5 -73.57087551	301.74671209	33695.5625	248.33333	20.037882	69.96211	-180.14876	1.6641483	0.30706096	0.4921512		
		6 -73.57087551	301.74671209	33695.5625	248.33333	20.037882	69.96211	-180.14876	1.3999374	0.35390425	0.6491728		
	-	-73.57087551	301.74671209	33695.5625	248.33333	20.037882	69.96211	-180.14876	0.93558574	0.35899349	0.6256413		
	8	B -73.57087551	301.74671209	33695.5625	248.33333	20.037882	69.96211	-180.14876	1.412988	0.17624199	0.6667867		
	9	-313.56294784	61.20801658	33695.5625	248.33333	19.974215	70.02578	-179.92384	1.3881433	0.33842923	0.11584248		
	10	-313.56294784	61.20801658	33695.5625	248.33333	19.974215	70.02578	-179.92384	0.93434644	0.24479389	0.5418284		
		-313.56294784		33695.5625	248.33333	19.974215	70.02578	-179.92384	0.6773317	0.37437982	0.6809076		
	12	2 -313.56294784	61.20801658	33695.5625	248.33333	19.974215	70.02578	-179.92384	1.6917623	0.25761442	0.5658691	-	
	13	3 -313.56294784	61.20801658	33695.5625	248.33333	19.974215	70.02578	-179.92384	0.8516008	0.28358351	0.8979124		
	14	4 -313.56294784	61.20801658	33695.5625	248.33333	19.974215	70.02578	-179.92384	0.6550455	0.30218442	0.84963036	_	
		132.90841802	198.98393572	17638.13867	220.625	20.041927	69.95807	-180.27827	0.05493462	0.34989746	0.3990324		
	16	4.64317213	226.35631429	24264.14453	241.36363	19.976088	70.02391	-179.95044	0.334237	0.51551815	0.8099978		
	•												

Protopipe – Gamma/hadron separation

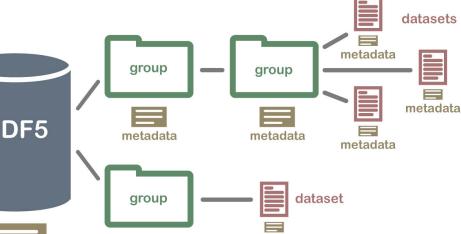
Protopipe – Gamma/hadron separation

cta


Protopipe - DL2 files

f databases					reco_events					
dl2_tail_gamma_merged.h5	obs_id	event_id	NTels_trig	NTels_reco	NTels_reco_lst	NTels_reco_mst	NTels_reco_sst	mc_energy	reco_energy	reco_alt
Query results	0 2	3301	4	3	1	2	0	0.11306483	0.09901197	69.8187
	1 2	14204	5	4	2	2	0	0.09049278	0.10220671	69.99206
	2 2	25006	9	5	2	3	0	0.18832242	0.19523066	70.02958
	3 2	25007	8	7	4	3	0	0.18832242	0.21187113	70.055336
	4 2	25401	3	2	0	2	0	0.20942356	0.23906799	69.67418
	5 2	27109	5	3	0	3	0	0.11683443	0.11994074	69.9287
	6 2	29908	2	2	0	2	0	0.12634292	0.10671375	70.00219
	7 2	30406	9	5	3	2	0	0.15606718	0.15290608	70.00522
	8 2	30608	5	5	4	1	0	0.0355488	0.03903736	69.90162
	9 2	30904	4	2	2	0	0	0.05010928	0.07498839	70.06539
	10 2	35402	4	2	2	0	0	0.01831837	0.0159413	70.68967
	11 2	40703	4	2	2	0	0	0.0317192	0.04321555	69.94814
	12 2	42703	6	3	0	3	0	1.3144745	1.4499964	69.79742
	13 2	42704	11	5	3	2	0	1.3144745	1.5562333	69.995094
	14 2	43402	5	2	1	1	0	0.10142623	0.10566033	69.967094
	15 2	44004	8	3	2	1	0	0.07901578	0.15111837	69.89622
	16 2	44406	2	2	2	0	0	0.01180071	0.02545218	70.01579
		44502	7	6	4	2	0	0.09912796	0.09770369	70.00026

BACKUP SLIDES


Open source file format with a "directory" like structure

- Store a similar set of data organized in the same way you organize files and folders on your computer
 - Directories \rightarrow groups
 - Folders \rightarrow datasets

- Allows for embedding of ۲ metadata:
 - Self describing
 - Processing the data: grab information from the metadata, that are already associated with the dataset

group aroup HDF5 metadata group metadata

metadata

metadata

