

The progress of HEPS project

Ping He

On the behalf of HEPS management

Oct. 26, 2020

Low Emittance Ring Workshop 2020 (Oct. 26)

1st high energy synchrotron radiation facility in China

- Brief introduction on HEPS
- Schedule, cost & manpower
- Organization of the project
- Main progresses since Jan. 2020
- Risks and mitigation

Main parameters	Unit	Value	
Beam energy	GeV	6	
Circumference	m	1360.4	BTS
Emittance	pm∙rad	< 60	Booster 0.5-6GeV C=454.07m
Brightness	phs/s/mm ² /mrad ² /0.1%BW	>1x10 ²²	STB LTB
Beam current	mA	200	dum
Injection		Тор-ир	
HEPS · LER2020		10/26/2020	

HEPS · LER2020

HEPS · LER2020

The construction period was estimated to be six and a half years.

> Date of Groundbreaking ceremony: Jun. 29, 2019

Proposed HEPS Funding Profile

M RMB

Budget Plan By Year

Project Management incl. design + contingency + all fare for admin process + collaboration, etc.

HEPS · LER2020

Project team was formed.

- 275 full-time staff (physicsts-34%, engineers-62%, Technicians-4%)
- ~250 open positions (a 500-person team in 2023 expected)

HEPS · LER2020

•The new project management was announced on Feb. 20,2020.

5 Divisions (52 system)	ems)	Accelerator Ping HE, Jingyi LI	Beamline Ye TAO, Ming LI	Technical Support Jianshe CAO	Utility Guoping LIN	Civil Construction Min ZHOU, Fan YANG
	W	eimin PAN	Yuhui DONG	Gang XU		Jian LIANG
<u>Chief economic manager</u>	Ya ZHOU					
	- <u>Haijie QIAN</u>				User Con	nmittee
Deputy technologist	<u>Jianshe CAO,</u>	HEPS Project (Office Proje	ct Management	Comm	nittee
Chief technologist	Guoping LIN				Comm Science and	nittee Technology
Deputy engineer	Weifan SHEN	<u>G, Jing ZHANG</u>			Internation	al Advisory
Chief engineer	Huamin QU					
<u>Deputy manager</u>	<u>Gang XU,</u>	Jian LIANG,	Sheng WANG			
Executive deputy manager	Yuhui DONG	ì				
Project manager	<u>Weimin PAN</u>	L				

HEPS · LER2020

HEPS Project Organization 4685

HEPS · LER2020

- 1. Linac, Booster, Storage Ring
- 2. Accelerator Physics, Magnet, Power Supply, Vacuum, Mechanical, Insertion Device, RF, Cryogenics, Microwave, Linac Power Source, Injection&Extraction, Alignment

Proposed Key Performance Parameter Summary

Accelerator design

Main parameter	Design	Goal@12/2025 for test
Beam energy	6 GeV	6 GeV
Beam current	200 mA	100 mA
Circumference of SR	1360.4 m	
Circumference of booster	454.5 m	
Hori. Natural emittance	<0.06 nm∙rad	0.1
Brightnoss	>1x10 ²²	2x10 ²¹
Dignitiess	phs/s/mm ² /mrad ² /0.1%BW	phs/s/mm ² /mrad ² /0.1%BW

To deal with challenges from technical and engineering design, updated the accelerator physics design ^[1,2,3,4]

- Storage ring lattice: enlarged drift space in arc (1.1 m more space/7BA), slightly larger magnet aperture (25→26 mm), emittance preserved (34.2→34.8 pm) with however smaller dynamic acceptance
- Booster design: higher bunch charge (2→5 nC), and emittance reduced by more than 50% (35 → 16 nm)
- Linac design: higher bunch charge (5 → 7 nC) and optimized layout
- Transfer lines: updated accordingly
- [1]. Y. Jiao, et al., RDTM (2020).
- [2]. Y. Peng, et al., RDTM (2020).
- [3]. C. Meng et al., RDTM (2020).

4]. Y. Guo et al., RDTM (2020).

10/26/2020 PRD design, J. Synchrotron Rad., (2018). 25, 1611. **13**

Accelerator Physics –cont.

Proposed neural network enhanced MOGA for lifetime optimization ^[1]

- use the trained model to make fast
 estimates in a fraction of second (vs. 3 hrs)
- promises less seeds to bring more diversities in solutions
- lifetime further improved by more than
 10%

Possibility studies of applying RF modulation in booster to help injection ^[2]

 Collective instability in the transient swap-out injection process may limit injection efficiency

Lengthen the bunch w/ RF modulations in booster

[1]. J. Wan, P. Chu, Y. Jiao, PR-AB (2020).[2]. H. Xu, Z. Duan, N. Wang, G. Xu, NIM-A (2020).

HEPS · LER2020

HEPS ·

Magnets of Storage Ring

Magnets

- 37 magnets in one 7BA cell
- BLG 0.11 1 T
- Quad 82 T/m
- BD 66 T/m
- Sext 6082 T/m²
- Oct 512600 T/m³
- Fast Corr 0.08 T

LER2020

Sextupoles and Octupoles begin the mass production

•1st article prototype.

Core and coils of sextupole

Core and coils of octupole

High Precision Stabilized DC Power Supply

Scheme

IGBT, One single module

MOSFET, Two modules in parallel

LFK2020

HEPS

MOSFET, One single module

10/26/2020

Test result

1.Three power supply prototypes with different topologies are produced and tested.

2. The test results of each prototype meet the specification.

Stability 290A: 5.12ppm 240A: 6.1ppm 150A: 6.0ppm 60A: 9.2ppm

Repeatability Better than 20 ppm

Fast Correction Power Supply

result

Test

prototype

test platform

1.amplitude-frequency test Tek JL CURSOR M Pos: 50.00,us CURSOR Tek Л CURSOR 类型 幅度 类型 幅度 类型 幅度 **Current setting** amplitude phase Iout Iref Iref Iout Iref Iout 信源 attenuation (dB) delay (° 信源 信源 CH4 CHA CH4 0.16 A@ 100 Hz -0.08 0.7 - V 54 An 光标 28.0mV 光标1 28.0mV 光标[·] 28.0mV 0.16 A@ 2 kHz -0.36 36 0.16 A@ 5 kHz 72 -1.2 M 250.us M 50.0 us M 5.00ms 0.16 A@ 10 kHz -2.7 105 CH4_20.0m/Be 17-Nov-19 14:58 CH4 20.0p u 17-Nov-19 1453 CH4_20.0mVBw 17-Nov-19 14:49 0.16A@10kHz 0.16A@100Hz 0.16A@2kHz 2.Step response test Acq Complete M Pos: 68.00 us CURSOR Tek Aca Complete M Pos: 68.00.us CURSOR 类型 时间 类型 时间

信源

CH4

± 19.61kHz ∠V 6.40mV

光标 17.0,us -6.60m

CH4

3→3.08A Step 3.Current wave test

Current setting (A)	1	5	10	15	-1	-5	-10	-15
FFT RMS (μV	89.8	99.3	95.9	96	88.9	98.2	92.2	91.2
Current wave (ppm)	17.96	19.86	19.18	19.2	17.78	19.64	18.44	18.24

Current setting (A)	Res	ponse time	e (μS)
0→0.08		53	
0→0.16		62	
3→3.08		57	
3→3.16		64	
13.16→13		63	
13.08→13		52	
3.16→3		62	
0.16→0		62	

result: 18bit

18

10/26/2020

CH2 50.0mVBy M 25.0,us

CH4 5.00mVBe 28-Jun-19 11:29

3.08→3A Step

Digital power supply control module(DPSCM)

finalized and used in PS prototype

20A DCCT testing

-

In mass production stage

DCCT

Each DCCT data records and technical specifications, which can be traced in detail.

	and Million	TANK MILLION	new Miles	man lan	man int	and here	-	and here	and her	man here	man line
		_									
and yours	server, him		sugar, har		1000.000	1000.000	1000	and prove the	1000,120	man (), proj	1000.110
	1.000	-			100		1000		100		- 12
_				_						_	
_	-			_		_		_		_	
_		_		_		_		_		_	
		_				_					
www.flamp	1000,004	whee/lines	says, him	mat Mary	1000.044	seat, fare	-	anan, Auror	1000.700	week/hirs	ange, 3 w
	1000				1000						
								_			
_						_		_		_	
100.709	100.70	100.704	100,000		100,000	100.004	100,000	nan Juny	1044,514		
					- A.				0.00		
_		-		-		-		-		-	
			trend Plant		mana likitai		water little		some firm	more sharts	
1.000											
								_			
				_		_		_		_	
non-Kara	100.000	2.5,8,95,91	1044.000		100,000	side forg	100.000	1000.00	100,010	man, Maria	1104.414

h 1 Scale 20mW/, Pos 0.0W, Coup AC, BW Limit 20 MHz, Inv Off, 1 3 cale 2000/, ros 0.07, comp Ac, or Limit 20 MHz, Inv Off, Imp 1M OF Probe 10.0000000 : 1, Skew 0.0s 1 2 Cale 2000/, Fos 0.07, Comp AC, BW Limit 20 MHz, Inv Off, Imp 1M OF Probe 10.000000 : 1, Skew 0.0s 1+Ch 2, Scale 5.00mW/, Offset 0.0W Sweep Mode Auto, Coup DC, Noise Rej Off, HF Rej Off, Holdoff 40.0ns Mode Edge, Source Ch 1, Slope Rising, Level 42.75mV Node Normal, Ref Center, Main Scale 5.000ms/, Main Delay -40.000000u ACQUISITION Node Averaging, # Avgs 64, Realtime, Vectors On, Persistence Off Antialiasing On

Paired waveform record

Matching error record

Closed loop test system based on simulated load

strict testing has been taken to each produced

HEPS . **LER2020**

Vacuum chamber

RF shielding bellows

Photon absorber

- The engineering drawings of the vacuum components for Linac, transport lines and booster have been completed, and the bids of massive production are underway.
- The prototypes of some key components in storage ring such as vacuum chambers, RF bellows and photon absorbers are being manufactured.

HEPS · LER2020

NEG Coating

- The synchrotron radiation light channel of antechamber with a height of 6 mm has been coated with NEG films based on many times experiments.
- The setup of the massive NEG coating for the vacuum chambers has been designed, and started to produce.

- SR Magnet support system
 - Factory acceptance of the girder prototype has been finished. Adjusting and stability performance meet the design requirements the stability performance meet the design requirements and stability performance meet the design requirements and stability performance meet the design requirements are stability and stability are stability are
 - ✓ Adjusting resolution :1µm
 - ✓ 1st natural frequency :>54Hz(requirement)
 - Prototypes of concrete plinth are manufactured and grouted in the test hall. MULTIPLETS

Modal test has been performed and the result is better than expected.

- Transverse modes >400Hz(most concerned)
- Adjustable magnet support on girder has been designed.

HEPS **LER2020**

- SR Sextupole Mover
 - Fully test of the 1st prototype accomplished.
 - Modified prototypes are designed and in ٠ manufacturing to secure reliability.
 - Scheme of slide guide without motion coupling is preferred.
 - 1scheme will also be studied to test the possible stability.
 - BS Magnet support
 - Design finished and reviewed.
 - Tender is under way.
 - Support of vacuum chamber
 - Installation manipulating space has been checked.
 - Thermal stress has been evaluated for the support of VC with high power deposition in Apple knot light beam line.
 - Prototype will be fabricated to test the adaptation

of VC baking expansion.

- CPMU engineering prototype is the key task this year. Magnets and poles with TiN coating are ready, the production of modified mechanical structure is done, assembly is ongoing, commissioning will be started soon.
- > In-vacuum Hall probe bench is upgraded, under tuning.

- > The design review of IAU、IAW、IVU is finished. Call for tender and procurement are carrying out.
- > The preliminary design of AK undulators, Mango wiggler is done.

• 500MHz NCRF cavity

- Contract awarded (03.2020)
- Final design review approved (08.2020)
- Production underway

HEPS · LER2020

- 1st cavity expected 10.2021

• 166MHz & 500MHz SRF cavity

- Cavity technical design reviewed (08.2020)
- Cavity & FPC contract awarded (10.2020)
- Cryomodule design underway
- 500MHz SRF cavity
 - Mechanical optimization completed (09.2020)
 - Technical design to be reviewed

10/26/2020

166MHz SRF cavity

500MHz SRF cavity

High-power RF & control

- High-power RF
- 166.6MHz/260kW and 500MHz/150kW solid-state amplifiers under development (early 2021)
- High-power trans. prototype to be completed (end 2020)
- RF control
 - Low-level RF 2nd prototype to be complete (end 2020)
 - Interlock system prototype under development (end 2020)

Interface

- RF hall design being continuously updated

HEPS · LER2020

HEPS cryogenic system

Helium cryogenic system

HEPS -

LER2020

- 1) Helium cryogenic system flow was finished
- 2) Technical requirements helium refrigerator was finished and invitation for bid at November 12.
- 3) Helium fluid cryogenic transfer and distribution was calculated
- 4) Preliminary design of SRF cavity cryomodule
- 5) Designed multi-channel cryogenic transfer line test plate

helium cryogenic system flow

helium cryogenic transfer and distribution

166.6MHz SRF cavity cryomodle

Multi-channel cryogenic line test plate

499.8MHz SRF cavity cryomodle

HEPS cryogenic system

Strip-line kicker prototype completed

• Features: 5-cell 300mm-long strip-line kicker (10mm gap) in a single module

Fast pulser prototype completed

• Features: fast pulser based on DSRDs driven by 6 stage inductive adder; pulse width=10ns

HEPS · LER2020

Lambertson Magnet prototyping

 Type1: Partially in-vacuum Lambertson magnet for SR; total thickness of septum wall=2mm

 Type2: Out-of-vacuum Lambertson magnet for BST; total thickness of septum wall=3.5mm

10/26/2020

Stored beam chamber: 1J22

Injected beam chamber: 316L

Accelerating structure

• Sub-harmonic buncher (SHB)

The cavities

The rough machining couplers

SHB1

• Waveguide

SHB2

□LLRF

- The processing, welding and debugging of the first edition of direct sampling RF front end are completed
- The design of direct sampling algorithm is completed, and the test environment is built to test the system

• Discharging unit calculation

Schematic of discharging unit

Dischaging unit

Lc & Rc calculation

Pulse transformer

HEPS · LER2020

- Finished multi-line measurement scheme design, adjustment software programming, set up measurement circumstances and finished the measurement test in which 6µm accuracy in single direction is achieved.
- Finished design and R&D of high precision and stability adjust mechanism for magnet pre-alignment, test is finished and 1μm adjust accuracy and 2μm locking stability achieved.

High precision and stability

adjust mechanism

Multi-line pre-alignment test circumstance

HEPS · LER2020
Surface Network Measurement

1. Finished 1st time HEPS surface network measurement during construction period. To obtain position in horizontal, GPS static survey is executed at 8 facility permanent points, 5 construction control points and 2 land control points, 2mm point accuracy achieved which meet requirement.

2. For levelling measurement, back and forth observation is carried out at 8 facility permanent points, 5 construction control points and 4 land control points, back and forth closure is 1.2mm, head-to-tail closure is 0.7mm, all meet requirement.

GPS survey at facility permanent point

Facility permanent point levelling

The design of the injector layout

- The LINAC, LTB and BST layout have completed the layout of magnets, vacuum, beam measuring components, injection and extraction components, etc.
- The BTS&BST layout have completed the magnets and beam measuring components design. Vacuum and mechanical layout are being calculated and designed.

Accelerator physics design of booster

Requirements from storage ring (SR)

- Emittance less than 20nm
- 15nC for high bunch charge mode
- Setting in a separate tunnel

Design consideration

- "High energy accumulation" to reduce the affect of TMCI @500MeV
- The emittance as lower as better , with α_c >2E-3 (requirement from TMCI)
- π section for 2 kicker re-injection

parameters	Value
Circumference	454.0665 m
Tune	21.30/10.19
Mom. compaction α_{c}	2.2E-3
Average βy	8.6m
Emittance@6GeV	16 nm
Energy loss per turn	3.89MeV
Energy spread	9.5E-4

Linac design

Parameters	Value	Unit		
Charge/pulse @ linac exit	≥2.5	nC		
Bunch number per pulse	5	-		
Pulse width	1.6	ns		
Energy	≥500	MeV		
Energy spread	≤0.5	%		
Energy stability	±0.25	%		
Repetition frequency	50	Hz		
Un-normalized rms emittance	≤41	nm∙rad		
Normalized rms emittance	≤40	µm∙rad		

HEPS · LER2020

P

1

BEAMLINE

- 1. Beamlines design
- 2. R&D for beamline technologies

Layout of 15 beamlines in Phase I 14 public beamlines: 13 IDs (3 long) + 1 BM 1 ID beamlines for optics test

HEPS · LER2020

	Beamlines	Features	
High Energy	Engineering Materials	50-170keV, XRD, SAXS, PDF	
	Hard X-Ray Imaging	10-300keV, Phase and Diffraction contrast imaging, 200mm	
		large spot, 350m long	
High Brightness	NanoProbe	Small probe, <10nm; InSitu nanoprobe, <50nm; 180m long	
	Structural Dynamics	15-60keV, single-shot diffraction and imaging;	
		< 50nm projection imaging	
	High Pressure	110nm focusing, diffraction and imaging	
	Nano-ARPES	100-2000eV, 100nm focusing, 5meV@200eV, APPLE-KNOT	
		undulator	
High Coherence	Hard X-ray Coherent	CDI(<5nm resolution), sub-μs XPCS	
	Scattering		
	Low-Dimension Probe	surface and interface scattering, surface XPCS	

	Beamlines	Features
	NRS&Raman	Nuclear Resonant Scattering and X-ray Raman spectroscopy
	XAFS	routine XAFS, plus 350nm spot and quick XAFS
General	Tender spectroscopy	Bending magnet, 2-10keV spectroscopy
beamlines	μ-Macromolecule	1 μ m spot, standard and serial crystallography
	pink SAXS	pink beam, lest optics
	Transmission X-ray Microscope (TXM)	full field nano imaging and spectroscopy
Test beamlines	Optics Test	with undulator and wiggler source for optics measurement and R&D

HEPS · LER2020

Engineering Materials Beamline – High energy

High energy X-ray for engineering materials

- Source, 2 x CPMUs for photon flux >1×10¹² @100keV
- Mono, Laue monochromator, asymmetrically cut crystal, Double crystal, fixed exit

50keV~170keV , $\Delta E/E$ ~1 \times 10 $^{\text{-3}}$ @100 keV

HEPS

LFR2020

• Focusing, Home made Nickel-based Kinoform, ~2μm×2μm and submicron

Layout of beamline and endstations

Hutch A: powder diffraction/3D XRD Hutch B: large samples tensile mode heating mode

100keV, ~500nm×200nm, ~5×10¹⁰phs/s

Hard X-ray Imaging Beamline - High energy

Goals: High sensitivity, Deep penetration, Multiscale mesoscopic spatial resolution, Large FOV, Multiple contrast mechanisms and compatible with diverse sample environments.

Probes: In-line phase contrast imaging; Diffraction Contrast Imaging

Application: Biomedicine: whole organ mesoscopic imaging

Engineering Materials

Fossils and Human Relics

Features: Large FOV and high Resolution

Ratio of spot size and PSF increase from 2k to 20k, 1000 times of voxels one CT

High sensitivity at high resolution & deep penetration case, very small PSF

1xCPMU + 1xWiggler+1x Mango Wiggler ; 350m long beamline

NanoProbe beamline - High brightness 1EP5

In-situ mode (K-B mirror)

Probe Size: < 50nm Work Distance: 50mm Flux: 10¹¹-10¹² phs/s

High resolution mode (Mutlilayer Laue Lens) Probe Size: <10nm Work Distance: 2mm

HEPS **LER2020**

Multimodal Probing

HEPS · LER2020

Hard X-ray Coherent Scattering beamline – High coherence

Dedicated for Nuclear Resonant Scattering and X-ray Raman spectroscopy(XRS)

Probes	Parameters	Specifications
	Energy resolution	High flux mode: 2.2meV@14.4keV High-resolution mode: 1meV@14.4keV
NRS 4 μ @Fe-57 5. Flux	4 μm ×2 μm (non dispersive, 2meV) 5.9μm ×20 μm (dispersive, 1meV)	High flux mode: 2×10 ¹⁰ phs/s@100mA
	Flux at sample position(focused mode)	High-resolution mode: 9×10 ⁹ phs/s@100mA
XRS	Energy resolution	0.8eV@10keV
	2μm ×2 μm Flux at sample position	2.6×10 ¹³ phs/s@200mA
HEPS · LER202	20 10/	26/2020 53

X-ray Raman Spectrometer, low-q + high-q

- Q-dependent XRS, 30 130 degree, Vertical and horizontal scattering
- 3*5 array Si(nn0) analyzer crystal, Rowland circle = 1-2m
- 55-µm pixel 2D detector
- Larger-solid-angle realized by multiple analyzer modules
- ✓ Large scattering angle
- home-made analyzer crystals and small pixel array detectors

2D detector by IHEP

Detection nose

- Novel Insertion Device design
- Optical design
- X-ray metrology
- Monochromators
- Mirror systems
- X-ray optics fabrication
- Nano-positoning instrumentation
- Time-resolved instrumentations
- X-ray pixel array detector

- Redshift design for transmission X-ray microscopy beamline
- Collimation design for high focus stability servicing spectrosocpy beamline
- Duo deflection mirror design for high stability servicing pink SAXS beamline
- Novel numerical simulation based on FEA for nano KB multilayer mirror

Development of Finite-element simulation for X-ray volume diffractive optics based on wave optical theory

X-ray Metrology- Flag-type Surface Profiler(FSP) Features: High accuracy, High Speed

1. Self-comparison Test Accuracy Flat mirror: RMS 25nrad 3mrad Curved : RMS 32nrad

DEG-BESSY- NOK-Characterisation Sept.8, 2005; La

10/26/2020

HEPS · LER2020

100

150

200

Position,mm

250

50

Monochromators - Prototype

Laue Monochromator: 60-150keV

High heatload liquid nitrogen double crystal monochromator (800W)

High energy resolution meV monochromator (2.3meV)

Features: Torpedo shape , Non-gravity compensation

1m long elliptically bent mirror

120mm short elliptically bent KB mirrors

Test results for shape accuracy

4685

HEPS · LER2020

Versatile monochromators: Preliminary designs under the way

DCM support optimized to higher eigenfrequency

X-ray focusing optics, by LIGA using a LIGA beamline in BSRF

High Energy X-ray Kinoform by LIGA technique Ni based, 4µm @87KeV measured@PETRAIII

X-ray PMMA Kinoform

HEPS · LER2020

Nano-focusing optics and nano position manipulator: prototype

200 nm

Nanofocusing - Multilayer Laue Lens

Multilayers and Mark layersFIB Polishing

Nano manipulator

Test result in metrology lab at IHEP Step scan: 0.5nm, stay time: 5s

HEPS · LER2020

Time-resolved:

Irreversible: metal laser 3D printing Reversible: High repetition rate laser Pump/Xray Probe for picosecond XRD&XAS

process by fast X-ray imaging

Demo test : White light from SCW $600 \ \mu m \ Ti6Al4V \ powders$ molten by 350W laser; 20kfps, 20µs exposure

HEPS . **LER2020**

HEPS

HEPS .

X-ray Pixel Array Detector

Pixel size: 150 x 150µm Pixel number: 1M Active area: 12.24cm×17.28cm Frame rates: 1 KHz Dynamic range: 20bits Energy range: 8-20keV, Si-based

Mini gap upgrade

LER2020

$55 \ \mu m$ pixel module nearly finished

high-energy sensor module under way

Beam Diagnosics & Control

Beam diagnostics system BPM development

The design of feedthrough is finished. Calling for Bids will be finished in one month.

The gird is pouring by concrete into the ground, the first order frequency of gird is **above 55Hz**

The small amounts feedthroughs manufactured by companies meets our requirements

Prototype of BPMs are manufacturing by the companies

HEPS · LER2020

DBPM electronics development

50 sets house-development DBPM electronics have been installed on BEPCII ring. They perform well.

The resolution of SA data of DBPM is **21nm in lab**

House-development water-cooled cabinet performs well. The temperature change inside the cabinet is **about 0.2°C (PP value)** in 8 days.

HEPS · LER2020

•Scope of beamline control system

- Motion control system
- Beam Position Monitoring system
- ➤Vacuum control system
- Cryo-cooling and water-cooling system
- Data Acquisition
- Equipment Protection System(EPS)
- >Personal Protection System(PPS)

Timing and Synchronization(Cooperation with Timing System)

≻Etc.

- System structure and key techniques study finished.
- One set of firmware for all 16 stations.
- Global logic diagram under design.

Preliminary logic diagram of the FOFB sub-station

Provision of scientific data and user services for HEPS

- ■Infrastructure
- Network
- Computing
- Storage
- Data Management
- Scientific Software

IT services are needed during the whole life-cycle of the Beamline experiments

Public Software and Services

Research on open IT technologies related to HEPS

HEPS · LER2020

Items	Performance	
Machine Room	Floor Space: 600 m ² Racks: 30 for phase I (totally 100)	14 beamlines phase I >90 beamlines phase II
General Network	1Gbps/10Gbps	
Data Center Network	10Gbps/100Gbps	
Storage Resource	30 PB Disk XXPB Tape	Tape storage will be provided according to the funding
Computing Resource	CPU: 90 TFLOPS(2500 CPU Cores) GPU:365 TFLOPS (48GPU NVIDIA Tesla V100)	
Big gapbetween the capability and the missions / requirements for the funding reason But the system is scalable		

- The HEPS (High Energy Photon Source) operate with large amount of power and energy stored in beams and superconducting magnets. In order to prevent damage to accelerator components in case of failure, highly reliable Machine Protection System(MPS) is indispensable.
- The MPS consist of Slow Protection System(SPS), Fast Protection System(FPS) and Run Management System(RMS). The SPS is Programmable Logic Controller(PLC) based system which can deliver less than 20 msec reaction time. The FPS is Field Programmable Gate Array(FPGA) based system which can deliver less than 20 µsec reaction time. The RMS guarantee HEPS running safely and easy to operate, together with Personnel Protection System(PPS), it can set the accelerator modes by mechanical key switch.

MPS architecture

- •The overall coverage of the HEPS database is very large, 16 working modules based on relational database are planned according to functions, including:
 - Project Management/Documentation; Parameter List; Naming Convention; Magnet Measurement Data; Device Information; Survey/Alignment; Cable; Authentication and authorization; Lattice/Model; Device/Configuration; Physics/Save/Restore; Operation/Maintenance; Alarm; Machine Protection System/ Interlock; MPS Postmortem Analysis

- Parameter List: Table design and data entry are completed and operational
- Naming Convention: 6 systems have been input and are in progress
- Magnet Measurement Data: Cooperate with the magnet system, complete the design of the table related to magnetic measurement report, software programming function test and Web interface development
- **Device Information:** Docking with the asset management system

Radiation Protection and Safety System

• Radiation shielding design verification according to engineering design modification.

- Accelerator shielding work includes local shield design for Linac collimator, dose rate assessment for reserved cable holes, maze and ducts.
- Beamline shielding work includes verification of tracing results of bremsstrahlung, optimization of shielding thickness under more strict dose constraint.
- Heat/Absorbed dose evaluation: evaluate the impact of heat deposition and absorbed dose caused by ring collimator to magnets, insert devices and electronics

• Complete the technical design review for radiation dose monitoring system and safety interlock system.

10/26/2020

Radiation Protection and Safety System

- Continue the research development for the both systems
- Amplifier circuit modified design
- Microcontroller prototype test
- Environmental monitor investigation

- PLC monitoring interface development based on EPICS
- PPS test platform was completed and key interlock logic design was vivificated

79

UTILITY

- Electrical power (operational demand): 35.4 MW
- Total cooling tower water (CTW) flow rate: 7200 t/hr
- Total low-conductivity water (LCW) flow rate: 4162 t/hr
- Total heat load for cooling water: 17.7 MW
- Total cooling load for HVAC: 16.5 MW
- Total heating load for buildings: 10MW
- The vibration criterion for the storage ring: 25 nm (RMS displacement all frequencies 1-100Hz)

- The key requirements and schematic diagram for utilities have been defined, and optimized with participation from scientific teams and external experts, engineers etc.
- The detail design of utilities was completed.
- Bids and award for mechanical and electrical equipment were mostly completed.
- The ground motion was surveyed, and the vibration of ring and experiment hall foundation have been simulated.

Detailed by Fang Yan

•Vibration measurement

- Variation of ground motion level
 - Location:
 - > ring
 - > testing area nearby cryogenics bldg.
 - Time: one week

Horizontal (east/west)

It is verified by simulation that soil replacement with concrete is equivalent to the grouting scheme upon vibration.

Geotechnical survey

HEPS -

LER2020

• Electric power demand for HEPS

Location	Electrical loads (kW)	Loads connected (kW)
Storage ring	13669	18329
Booster and BTR&RTB	5300	6820
LINAC and LTB	963	1725
Beamline	2841	6188
Ring building	4406	20255
Central utility and cryogenic bldg.	8220	15202
Total	35399	68519

Voltage levels on-site

- 10kV power distribution system, for HV power equipment and step-down substation incomer
- 0.4kV power distribution system, for dedicated services and general services
- Power factor ≥ 0.96
- Voltage drop will be limited to 5%.

HEPS · LER2020

• Grounding Electrode System

- Utilize the building steel which is melded together by φ10 steel bar to make up natural grounding grid.
- Its ground resistance will be less than 0.5 Ω .
- Integrated for lightning protection grounding, safety protection grounding and instrument reference grounding.

• The ground bus

- To be connected directly to the grounding grid where needed respectively.
- Power distribution system (LV)
 - TN-S AC grounding connection mode
- Equipotential bonding
 - Connect all accessible metalwork to the system earth.

•The heat load dissipated by HEPS machine

- The major heat sources of the facility are:
 - RF power sources, magnets, vacuum chambers, cryogenic compressors, power converters, pump, heater, etc.

Location	Heat loads (kW)
LINAC and LTB	297
Booster and BTR, RTB	4592
Storage ring	10217
Beamline	546
Cryogenic	1200
pump	831
Total	17683

Cooling water system

- Air supply for pneumatic components on site
- Design requirements
 - Capacity: 22.1 m³/min
 - Operating pressure
 - ♦ 0.6 MPa
 - ♦ 0.8 MPa
 - Air quality
 - ◆ Pressure dew point temp.: -40°C
 - ◆ Particle removal efficiency: ≥99.97%
 - ◆ Maximum oil content: ≤0.01ppm
- Compressor plant in utilities bldg.
- Distribution piping around machine area

•Expected cooling and heating loads of HVAC

Location	Summer cooling load (kW)	Winter heating load (kW)
Experiment hall	4081	3436
Ring tunnel	870	0
Booster tunnel	517	75
LINAC tunnel	35	9
Ring tunnel mezzanine	2360	2718
User building	1900	1043
Ring service bldg.	2980	1349
Booster service bldg.	406	107
LINAC service bldg.	168	65
Long beamline	450	200
Central utilities bldg.	800	690
Cooling water for cryogenics	1200	0
Total	15767	9692

HEPS · LER2020

• Layout of HVAC

- 16 air handling rooms around user bldg. for experiment hall air conditioning.
- 12 air handling rooms around ring service bldg for ring tunnel air conditioning.
- 1 air handling room in Linac
- 2 air handling rooms in booster service bldg.
- Air pressure and air renewal
 - The ring tunnel must be kept at a slight underpressure to prevent possibility of air contamination by air exhaust.

- The air pressure of experience hall should be kept slightly higher than atmospheric pressure to keep dust away from the area by continuously introducing a certain amount of outside air.
- Offices, conference rooms and other occupied areas will be provided with a minimum of 30m³ /hr. persons.

HEPS · LER2020

	Location	Crane
	Experiment hall equipment access corridor	5T
	Ring tunnel equipment access corridor	20T
	Ring rf power source hall	10T
R20	Booster rf power source hall	5T
	Cryogenics hall	20T

HEPS ·

LE

Front ends equipment access

- Monorail crane overhead along beamline
- No doors on ratchet wall

93

Energy conservation program

• Main measures:

- Building energy conservation design
- Waste heat recovery
- Free cooling in winter
- Use green energy
- Heat recovery
 - Using waste heat of HEPS cooling water for heat source of the campus by heat recovery chillers

Free cooling in winter

 HVAC chilled water from heat exchange cooled by cooling tower water

• Green energy

- Solar PV array on the roof of ring building
 - Reserved the load of roof structure for installing solar system
 - Electric company will Invests cost of solar energy system

Building energy conservation design

- Building envelope thermal insulation performance:
 - K≤0.45W/m².K
 - Air tightness.

- Reduce consumption
- Increase efficiencies
- Smarter energy management

Energy conservation assessment was approved

HEPS -**LER2020**

CIVIL CONSTRUCTION

HEPS · LER2020

HEPS · LER2020

Up to Sep. 2020

- ➢ 80% of the total earthwork in the park area had been completed (about 210,000 cubic meters);
- Roof-topping works for the utility building and the Booster RF hall had been compeleted;
- Outdoor works had been under constructure;

Large-span Foundation replacement (more than 30m)

HEPS · LER2020

Hard X-ray Coherent Scattering Beamline

- A Risk is an uncertain event or condition that, if it occurs, has an effect on at least one project objective, or the effect of uncertainty on the achievement of objectives.
- Sources of project cost and schedule risk:
 - > Estimate Uncertainty (EU)
 - For activities in the baseline scope
 - Depend on the activity definition maturity
 - > Identified Risk Events
 - Known events that may or may not happen
 - Not included in baseline scope activities
 - > Unidentified Risk Events
 - Unknown events that may or may not happen ("unknown unknowns")
 - Not captured in the AUP Risk Register

• We are trying to introduce the Risk Analysis Method in HEPS project

Very preliminary now!

HEPS · LER2020

Risks and Risk Mitigation(R&D)

Accelerator

Risk Description	Risk Response	
Magnet strength, field quality	Magnet prototypes	
Support structure vibration, thermal effect	Simulations, environmental mea., prototype mea.	
Vacuum SR heating, beam impedance	Simulation, prototype testing	
Fast kicker system/on-axis swapout injection	Prototyping, pulser testing	
Power supply accuracy, reproducibility	Prototyping, develop current calibration capability	
Strong HOM-damped 166MHz SRF cavity, lack of beam demonstration	500MHz HC used as main cavities as a backup solution	

Long-lead procurement- for instance, vacuum chamber material, magnet material, etc.

• Very little contingency of budget (3% included in the total budget)

- Foreign currency rate increased compared to the approval time of the project
- Unexpected inflation, especially the cost of some important materials

• No any contingency of schedule

- Civil construction needs more time than expected
- Some advanced hardware/devices maybe delayed during manufacture or import
- COVID-19 cause 2~3 months delay
- Manpower
- Technical problems exist in all systems (work packages)
- Other unknown risks

HEPS Project Construction Video

HEPS · LER2020

10/26/2020

ILS T

Thanks for your attention!

